Особенности нейтрализации быстрых протонов в углеводородном пеллетном облаке

О. А. Бахарева¹⁾, В. Ю. Сергеев, И. А. Шаров

Санкт-Петербургский политехнический университет Петра Великого, 195251 С.-Петербург, Россия

Поступила в редакцию 12 апреля 2024 г. После переработки 24 апреля 2024 г. Принята к публикации 26 апреля 2024 г.

Для измерения высокоэнергетичной части функции распределения ионов по энергии в горячей плазме с помощью PCX (Pellet Charge eXchange) диагностики необходимо знать зависимость от энергии Eдоли быстрых ионов $F_0(E)$ нейтрализующихся при пересечении пеллетного облака. С использованием экспериментальных и расчетных данных об испарении полистироловых макрочастиц в гелиотроне LHD проведен расчет $F_0(E)$ для протонов в углеводородном облаке в диапазоне энергий 50–1000 кэВ и при питч-углах $\geq 70^{\circ}$. При энергиях в диапазоне 50–200 кэВ необходимым становится учет ослабления потока нейтрализовавшихся протонов при многократных пересечениях облака. Потери энергии протонами вдоль траектории ограничивают снизу возможный диапазон PCX измерений E > 100 кэВ. Необходимость контроля ионизационного состава и структуры облака ограничивает локализацию области обзора детектора нейтральных атомов в пределах ± 30 мм от положения макрочастицы вдоль магнитного поля. Это обуславливает необходимость совмещения оси инжекции с осью наблюдения NPA (Neutral Particle Analyser) для оптимальной геометрии PCX измерений при использовании полистироловых макрочастиц.

DOI: 10.31857/S1234567824110065, EDN: LTJPBU

1. Введение. РСХ (Pellet Charge eXchange) диагностика является активным методом,позволяющим измерять распределение по энергии быстрых ионов: альфа-частиц, изотопов водорода при дополнительном нагреве с использованием ионно-циклотронного резонанса ICRH и/или пучками нейтральных атомов NBI [1, 2]. Мишенью для нейтрализации быстрых ионов фоновой плазмы с целью их последующей регистрации анализатором нейтральных частиц NPA (Neutral Particle Analyser) служит плотное нейтрально-плазменное облако вблизи испаряющейся макрочастицы из материала с малым зарядом ядра.

Доля нейтрализовавшихся на пеллетном облаке быстрых ионов $F_0(E)$ является важнейшим параметром диагностики. Она зависит от энергии ионов и пройденной ими интегральной толщины облака $S_{ncl} = \int n_{cl}(l)dl$, где $n_{cl}(l)$ – концентрации тяжелых частиц в облаке вдоль траектории l движения быстрой частицы. При реализации РСХ-диагностики до настоящего времени предполагалось, что: 1) применима "однопроходная" модель, т.е. в видимой детектором NPA части облака каждая из падающих на облако быстрых частиц проходит через него один раз, нейтрализуясь с вероятностью $F_0(E)$; 2) ларморовский радиус быстрого иона много больше поперечного размера облака, а относительная потеря энергии и рассеяние быстрого иона в облаке малы; 3) ионизационный состав испарившихся частиц не меняется по облаку. При перезарядке быстрых протонов в облаке их равновесная нейтральная фракция рассчитывается в таком случае как [3]

$$F_0(E, S_{ncl}) = F_0^{\infty}(E) \cdot (1 - e^{-(\sigma_{01}(E) + \sigma_{10}(E))S_{ncl}}), \quad (1)$$

где σ_{10} и σ_{01} – суммарные сечения нейтрализации быстрого протона H⁺ и потери электрона быстрым нейтральным атомом H⁰, вычисленные при некотором предполагаемом одинаковом по всему облаку ионизационном составе; $F_0^{\infty}(E) = 1/[1 +$ $+ \sigma_{01}(E)/\sigma_{10}(E)$]. Из уравнения (1) видно, что при достаточно больших значениях S_{ncl} нейтральная фракция $F_0(E, S_{ncl})$ достигает своего "равновесного" значения $F_0^{\infty}(E)$, не зависящего от S_{ncl} . Использование в расчетах зависимости $F_0^{\infty}(E)$ существенно упрощает расшифровку спектров в РСХ диагностике. Следует отметить, что применение однопроходной модели и равновесной зависимости $F_0^{\infty}(E)$ оказывается не всегда правомерно. В работе [4] с помощью расчетов по методу Монте-Карло было проанализировано ослабление потока нейтрализовавшихся альфа-частиц с энергией до 4МэВ за счет многократного пересечения ими литиевого пел-

 $^{^{1)}{\}rm e\text{-}mail:}$ o.bakhareva@spbstu.ru

летного облака ("многопроходная" модель). Ослаб- жен NP.

ление было заметным при энергии-альфа частиц <250 кэВ/нуклон.

В работах [3, 5, 6] была предложена и развита идея РСХ диагностики протонов с энергиями E == 50–170 кэВ при дополнительном ICRH и/или NBI нагреве на стеллараторе LHD, использующей в качестве нейтрализующей мишени облако макрочастицы из полистирола (C₈H₈). В работе [6] были сделаны расчеты зависимости $F_0^{\infty}(E)$ для протонов с энергиями E = 50-1000 кэВ в углеводородном облаке по однопроходной модели для разных предполагаемых усредненных ионизационных составов облака.

В экспериментах с инжекцией полистироловых макрочастиц в LHD [7–9] продемонстрировано существенное изменение ионизационного состава по облаку. Кроме того, из уравнения (1) следует, что при достаточно больших плотностях тяжелых частиц n_{cl} в облаке величина $F_0(E, S_{ncl})$ может достигать "равновесного" значения на небольшом участке dl траектории быстрой частицы внутри облака. В этом случае $F_0(E, S_{ncl}) \cong F_0^{\infty}(E)$ будет меняться вдоль траектории быстрой частицы и иметь значение на выходе из облака, соответствующее значениям $F_0^{\infty}(E)$ в периферийной части. Эти особенности процессов нейтрализации быстрых частиц в пеллетном облаке должны быть учтены при расчете $F_0(E)$.

В данной работе уточнена модель расчета зависимости $F_0(E)$ в облаке полистироловой макрочастицы с учетом имеющихся экспериментальных и расчетных данных о распределениях свечения углеводородных облаков в линиях H_β , CI, CII, CIII, распределениях температуры T_{cl} и концентрации электронов облака n_{cl} , а также о скорости испарения при инжекции таких макрочастиц в плазму гелиотрона LHD [7– 9]. Результаты расчета использованы для формулирования диапазона параметров при РСХ измерениях функции распределения по энергии быстрых протонов с использованием полистироловых макрочастиц.

2. Схема РСХ измерений на гелиотроне LHD. Вид сверху на экваториальную плоскость установки вблизи порта 3-О показан на рис. 1. Полистироловая макрочастица с начальным диаметром $d_{\rm pel} \approx 900$ мкм инжектируется вдоль большого радиуса с внешней стороны гелиотрона в его экваториальной плоскости. С помощью инжектора TESPEL она ускоряется до скоростей $v_p = (400-500)$ м/с в направлении центра установки [10]. Испарение происходит во внешней части плазменного шнура, как правило, на расстоянии, не менее половины его малого радиуса от магнитной оси. Для регистрации перезарядившихся частиц в порте 3-О располо-

Письма в ЖЭТФ том 119 вып. 11-12 2024

жен NPA, имеющий возможность регулировки угла наблюдения.

Испаренное с поверхности макрочастицы вещество, испытывая последовательную ионизацию $(\mathrm{H}^{0} \rightarrow \mathrm{H}^{+}, \mathrm{C}^{0} \rightarrow \mathrm{C}^{+} \rightarrow \mathrm{C}^{2+} \rightarrow \ldots)$ разлетается вдоль магнитного поля и заполняет магнитную силовую трубку с характерным поперечным радиусом r_{cl}. На рисунке 1 цветом показаны области с доминирующими концентрациями соответствующих ионизационных состояний в облаке. Вблизи макрочастицы испаренное вещество движется вместе с ней. При этом, ионы испытывают ускорение против градиента магнитного поля из-за нарастающей поляризации облака в неоднородном магнитном поле LHD [11]. На рисунке 1 это показано нарастающим смещением удаленных частей облака от оси магнитной силовой трубки, на которой расположена макрочастица.

Рис. 1. (Цветной онлайн) Схема инжекции полистироловой макрочастицы и перезарядки быстрых протонов в углеводородном облаке РСХ-диагностики

3. Модель для вычисления доли нейтрализовавшихся быстрых протонов. Как показано на рис. 1, быстрые протоны с энергией E, скоростью v_{H^+} и питч-углом θ пересекают облако и на каждом шаге ларморовской спирали могут нейтрализоваться с вероятностью $F_0(E)$. Не удерживаемые магнитным полем нейтральные атомы вылетают за пределы плазмы и могут быть зарегистрированы детектором NPA, измеряющим распределение быстрых частиц по E. Ось наблюдения NPA может быть расположена под углом θ к магнитному полю для регистрации нейтральных атомов, образовавшихся при нейтрализации быстрых протонов с соответствующим питч-углом θ . В стационарном режиме, поток падающих на облако быстрых протонов в заданной области сформирован из частиц, прибывающих в нее из фоновой плазмы вдоль магнитного поля. Согласно однопроходной модели, $F_0(E)$ рассчитывается в приближении плоского и однородного по x потока быстрых частиц, которые в области обзора детектора однократно пересекают облако. Ось x перпендикулярна магнитному полю и выбрана в плоскости оси наблюдения NPA.

Если потери энергии и рассеяние протонов на частицах облака невелики, то измеряемая детектором NPA скорость счета dN_0/dt нейтральных атомов H⁰ в диапазоне энергий $(E, E + \Delta E)$ может быть связана с функцией распределения по энергии $dn_{\rm H^+}/dE$ быстрых протонов фоновой плазмы следующим соотношением:

$$\frac{dN_0}{dt} = \frac{dn_{\rm H^+}}{dE} \Delta E \cdot v_{\rm H^+} \sin \theta \cdot \overline{F_0(E)\kappa} \cdot S_{\rm eff} \frac{\Delta\Omega}{4\pi} \eta \mu, \quad (2)$$

где $S_{\text{eff}} = 2r_{cl} \cdot 2r_{\text{NPA}}$ – видимая NPA эффективная площадь облака при условии $r_{cl} \ll r_{\rm NPA}$, которое обычно выполняется при РСХ измерениях; усреднение $F_0(E)\kappa = \iint F_0(E, y, z) \cdot dy \cdot \kappa(z) dz / S_{\text{eff}}$ выполняется по части облака, видимой детектором NPA; к – фактор ослабления потока быстрых ионов в многопроходном приближении; $\Delta\Omega$ – телесный угол, под которым из облака видна принимающая сигнал площадь детектора NPA, η – эффективность регистрации быстрых атомов детектором NPA, µ – вероятность того, что быстрый атом H⁰ не ионизуется в фоновой плазме и долетит до детектора. Выражения для $\Delta\Omega$, η и μ были получены ранее в [3, 5, 6] и в данной работе не обсуждаются. Новый, по сравнению с однопроходной моделью [3–6], множитель κ в уравнении (2) характеризует возможное ослабление потока быстрых ионов к моменту их попадания в область обзора детектора вследствие вероятной нейтрализации на предыдущих участках траектории. Детали расчета множителя κ представлены в разделе 5.

Значение $F_0 \equiv F_0(E)$ на выходе из облака для различных значений энергии E находятся из решения уравнения для dF_0/dx , при начальном условии $F_0(x = 0) = 0$ и условии сохранения числа частиц H^+ и H^0 в потоке: $F_1(x) + F_0(x) = 1$. Учитывая, что $dx = dl \cdot \sin(\theta)$ и предполагая z = const вдоль траектории протона в условиях, когда ларморовский радиус быстрого иона много больше поперечного размера облака, уравнение для dF_0/dx из работ [3–6] может быть записано в виде:

$$\frac{dF_0}{dx} \simeq \frac{(1 - F_0(x))\sum_i n^{(i)}(x)\sigma_{10}^{(i)} - F_0(x)\sum_i n^{(i)}(x)\sigma_{01}^{(i)}}{\sin(\theta)},$$
(3)

где $n^{(i)}$ – концентрация тяжелых частиц углеводородного облака; $\sigma_{10}(i)$ и $\sigma_{01}(i)$ – сечения нейтрализации быстрого протона H⁺ и потери электрона быстрым нейтральным атомом H⁰ на однородной мишени из частиц сорта (*i*). Зависимости сечений $\sigma_{10}(i)(E)$ и $\sigma_{01}(i)(E)$ от энергии взяты из работы [6].

4. Предполагаемые распределения ионизационных состояний в углеводородном облаке. Структура углеводородного облака вблизи испаряющейся в плазме полистироловой макрочастицы изучалась на гелиотроне LHD [7–9]. В экспериментах на LHD измерялись пространственные распределения излучения нейтральных атомов H^0 , C^0 , первого C^+ , и второго ионов C^{2+} углерода, а также температуры T_{cl} и концентрации n_{cl} электронов облака.

При расчетах нейтрализации быстрых протонов в углеводородном пеллетном облаке использовались подобранные модельные пространственные распределения различных степеней ионизации углерода и водорода, представленные на рис. 2. Данные распределения позволяют воспроизвести наблюдаемые размеры излучающих областей нейтрального водорода, а также нейтрального, однократно и двукратно ионизованного углерода в облаке с учетом влияния как электронов пеллетного облака, так и электронов горячей фоновой плазмы [12]. Таким образом, выбранные распределения согласуются также с распределениями концентрации и температуры электронов облака, измеренными экспериментально в области свечения нейтрального водорода. При вычислении распределения С³⁺ на рис. 2 предполагается, что продольный спад суммарной концентрации тяжелых частиц определяется скоростью поперечного дрейфа в неоднородном магнитном поле [11]. Отметим, что это предположение использовалось в работе [13], в которой удалось согласовать экспериментальные измерения скорости испарения с расчетом при одновременном учете экранирования полистироловой макрочастицы не только нейтральным облаком испаренного вещества, но и облаком вторичной плазмы пеллетного облака.

Данное модельное представление ограничивается степенями ионизации углерода до C^{3+} включительно. Как видно из рис. 2b, степень ионизации атомов углерода в облаке достаточно быстро меняется вдоль магнитного поля, и уже на удалении 30 мм около половины ионов углерода ионизованы до C^{3+} , а на удалении 60 мм полностью отсутствует ион C^{2+} .

Рис. 2. (Цветной онлайн) (а) – Радиальные профили при z = 0 мм концентраций водорода в зарядовых состояниях H^0 (кривая 1), H^+ (кривая 2) и их суммы $n_{\mathrm{H}0} + n_{\mathrm{H}+} = n_{\mathrm{C}0} + n_{\mathrm{C}+} + n_{\mathrm{C}2+} + n_{\mathrm{C}3+}$ (кривая 7), а также концентраций углерода в зарядовых состояниях C^0 (кривая 3), C^+ (кривая 4), C^{2+} (кривая 5), C^{3+} (кривая 6); $r_0 = 3.8$ мм; (b) – продольные профили (вдоль z) концентраций водорода и углерода в различных зарядовых состояниях (обозначения те же, что и в части (а)) при r = 0

При этом о дальнейшей ионизации экспериментальные сведения отсутствуют. В связи с этим в данной работе для расчетов $F_0(E)$ анализируется область не далее ± 60 мм от макрочастицы в направлении магнитного поля.

5. Результаты расчетов нейтральной фракции $F_0(E)$ по однопроходной модели. Модельное распределение концентраций тяжелых частиц облака, показанное на рис. 2, использовалось при вычислении доли перезарядившихся быстрых протонов $F_0(E)$ на одном проходе через облако. В соответствии с разделом 3, в выбранном приближении облако состоит из тяжелых частиц следующих сортов (i): H^0 , H^+ , C^0 , C^+ , C^{2+} , C^{3+} , а так же из холодных электронов.

На рисунке 3 показаны примеры рассчитанных из уравнения (3) долей нейтрализовавшихся протонов $F_0(x)$ для двух поперечных сечений облака на

Рис. 3. (Цветной онлайн) Изменение нейтральной фракции F_0 с увеличением пройденного расстояния x вдоль хорд: $y/r_0 = 0$ (кривая 0), $y/r_0 = 0.25$ (кривая 1), $y/r_0 = 0.5$ (кривая 2), $y/r_0 = 0.75$ (кривая 3) при $\theta = 70^{\circ}$ для энергии E = 100 кэВ (a), (b), E = 500 кэВ (c), (d) и E = 1 МэВ (е), (f): при z = 0 мм (a), (c), (e) и при z = 30 мм (b), (d), (f). $r_0 = 3.8$ мм

разных расстояниях z от макрочастицы: (a), (c), (e) – при z = 0 мм, (b), (d), (f) – при |z| = 30 мм. При этом рис. 3a, b соответствуют энергии протона E = 100 кэВ, рис. 3c, d энергии протона E = 500 кэВ, рис. 3e, f энергии протона E = 1 МэВ. На каждом графике эволюция $F_0(x/r_0)$ приведена для четырех хорд по y, проходящих на разных расстояниях от продольной оси облака. Из рисунка 3a, c видно, что в центре облака (z = 0) при небольших энергиях E = 100-500 кэВ заметная доля быстрых протонов, нейтрализовавшихся при прохождении центральной низкоионизованной части облака, вновь ионизуется в периферийном слое на выходе из облака.

При E = 1 МэВ на рис. Зе данный эффект менее заметен, так как интегральная толщина внешнего слоя недостаточна для ионизации. Протоны, пересекающие облако по удаленным от его оси хордам $y/r_0 \ge 0.75$ нейтрализуются в соответствии с параметрами внешнего слоя.

При удалении от макрочастицы вдоль z ионизационный состав вдоль хорды становится более высокоионизованным и слабо зависит от поперечной координаты. В связи с этим уменьшается зависимость значения F_0 от хорды, по которой быстрые частицы пересекают облако. Исключение составляют наиболее удаленные хорды, где интегральная плотность облака вдоль траектории недостаточна для достижения $F_0^{\infty}(E)$ характерной для данного сечения.

Были получены средние по поперечному сечению облака значения $\langle F_0(E) \rangle_y$ при различных z. Для этого в выбранном сечении по z вычислялись хордовые значения $F_0(E, y, z)$ с шагом по $y: \delta y = r_0/20$.

На рисунке 4а показаны зависимости $\langle F_0(E) \rangle_y$, полученные для четырех значений z. Кроме того, на рис. 4b приведены зависимости $F_0^\infty(E)$ для различных зарядовых составов.

Рис. 4. (Цветной онлайн) (а) – Вычисленные зависимости $\langle F_0(E) \rangle y$ для z = 2 мм (кривая 1), 10 мм (кривая 2), 20 мм (кривая 3), 30 мм (кривая 4); (b) – зависимости $F_0^{\infty}(E)$, вычисленные для четырех зарядовых составов облака, $n_{\rm H+}: n_{\rm C+}: n_{\rm C2+} = 2:1:1$ (кривая 1); $n_{\rm H+}: n_{\rm C2+} = 1:1$ (кривая 2); $n_{\rm H+}: n_{\rm C3+} = 2:1:1$ (кривая 3); $n_{\rm H+}: n_{\rm C3+} = 1:1$ (кривая 4)

Из представленных на рис. 4а распределений видно, что по мере удаления от макрочастицы вдоль zзначения $\langle F_0(E) \rangle_y$ снижаются. При усреднении по сечениям с различными значениями z в пределах области обзора детектора, наибольший вклад в среднее $\overline{F_0(E)}$ дадут сечения с меньшими z, т.е. наиболее близкие к центру облака (z = 0). Реальные размеры области наблюдения NPA составляют несколько десятков миллиметров в диаметре, а относительное положение облака и области наблюдения также может существенно, в пределах нескольких десятков миллиметров, варьироваться от эксперимента к эксперименту. Поэтому при анализе данных NPA для обеспечения возможности абсолютных измерений требуется детальный расчет $F_0(E) \cdot \kappa$ в части облака, попадающей в область обзора NPA. Использование зависимости $F_0^{\infty}(E)$, вычисленной для гипотетического усредненного ионизационного состава облака в формуле (2) может приводить к существенным ошибкам при реконструкции абсолютных значений $dn_{\rm H+}/dE$ вплоть до порядка величины и более. При этом, как отмечалось ранее в работе [6], восстановление формы спектра остается возможным.

6. Оценки влияния многократного пересечения облака протонами. Множитель κ в формуле (2) – это коэффициент ослабления потока быстрых частиц в "многопроходном" приближении, учитывающий выбывание из потока нейтрализовавшихся ранее частиц. Нейтрализация на каждом проходе через облако (с номером l) заметно зависит от его удаления z_l от макрочастицы. Итоговое ослабление может быть представлено как:

$$\kappa(z, E, \theta) = \prod_{l=0}^{N(z, E, \theta)} (1 - \langle F_0(E, z_l) \rangle), \qquad (4)$$

где $N(z, E, \theta)$ – количество проходов через облако, совершенных быстрым ионом начиная с z = 60 мм до его попадания в сечение z, а l принимает значения от 0 до $N(z, E, \theta)$. Отметим, что, как видно из рис. 4, увеличение степени ионизации компонент облака приводит к снижению нейтральной фракции F_0 . При увеличении степени ионизации углерода на 1, значение F_0 снижается от 2 при энергии 1 МэВ до 10 раз при энергии 100 кэВ. В связи с этим нейтрализацией протонов на удалении более 60 мм можно пренебречь.

Для учета потерь энергии быстрого протона вдоль траектории dE/dx из-за столкновений с частицами облака использовано выражение, полученное из формул для потерь энергии быстрых положительных ионов [14]:

$$\frac{dE}{dx} = -\frac{2\pi e^4 Z_{\rm H}^2 m_p}{E m_e} n_{\rm C,H}(x) \times \left(Z_{\rm C} \ln \left(\frac{2E}{I_{\rm C}} \cdot \frac{m_e}{m_p} \right) + Z_{\rm H} \ln \left(\left(\frac{2E}{I_{\rm H}} \cdot \frac{m_e}{m_p} \right) \right) \right), \quad (5)$$

где m_p и m_e – массы протона и электрона, $Z_{\rm H} = 1$, $Z_{\rm C} = 6$, $I_{\rm H} = 15.0$ эВ, $I_{\rm C} = 33.3$ эВ, $n_{\rm C,H} = n_{\rm H0} + n_{\rm H+} = n_{\rm C0} + n_{\rm C+} + n_{\rm C2+} + n_{\rm C3+} + n_{\rm C4+} + n_{\rm C5+} + n_{\rm C6+} - n_{\rm C6+}$

JETP Letters том 119 вып. 11-12 2024

половина концентрации тяжелых частиц облака во всех зарядовых состояниях.

В таблице 1 указаны значения N количества проходов, совершаемых быстрым протоном с энергией Eи питч-углом θ от границы облака при z = 60 мм до центра z = 0, а так же соответствующие значения коэффициента ослабления κ и относительной потери энергии $\Delta E/E$. Результаты расчета $\kappa(z)$ при нескольких значениях питч-угла θ приведены на рис. 5а, b для энергий протона 50 кэВ и 100 кэВ, соответственно.

Таблица 1. Количество проходов N и коэффициент ослабления потока κ и относительная потеря энергии $\Delta E/E$ быстрых протонов с энергией E и питч-углом θ при прохождении участка длиной в 60 мм вдоль z

E, кэВ	θ	70°	80°	85°	89°
50	N	> 3	>6	>11	> 52
	$\kappa(0, E, \theta)$	0.8	0.7	0.6	0.14
	$\Delta E/E, \%$	100	100	100	100
100	N	2	4	8	37
	$\kappa(0, E, \theta)$	0.92	0.88	0.80	0.45
	$\Delta E/E, \%$	0.4	1	2.5	12
200	N	2	3	6	26
	$\kappa(0, E, \theta)$	0.99	0.97	0.95	0.85
	$\Delta E/E, \%$	0.2	0.3	0.7	3.5

Видно, что при E = 50 кэВ происходит значительное ослабление потока вследствие нейтрализации $\kappa = 0.14$ при питч-угле $\theta = 89^{\circ}$, а при угле $\theta = 70^{\circ}$ потери из-за нейтрализации заметно меньше $\kappa = 0.8$. Это не препятствует проводить РСХ измерения и восстанавливать соответствующие части распределения по энергии. А вот потери энергии для E = 50 кэВ оказываются очень значительными. Даже при питч-угле $\theta = 70^{\circ}$. Наблюдается полная термализация протонов с такими энергиями в облаке. Но уже при E = 100 кэВ потери энергии составляют 12% при угле $\theta = 89^{\circ}$, а при угле 70° не превышают 1%. При этом коэффициент $\kappa = 0.45$ при $\theta = 89^{\circ}$ и $\kappa = 0.82$ при $\theta = 70^{\circ}$. По мере увеличения энергии протонов, влияние этих двух эффектов снижается.

Таким образом, в диапазоне энергий 100–200 кэВ требуется учет ослабления потока быстрых протонов вследствие их нейтрализации, а также учет потери энергии протонами, который может достигать десятка процентов. При больших энергиях эффектами, связанными с потерей энергии и выбыванием протонов вследствие нейтрализации можно пренебречь.

Можно ожидать, что при PCX измерениях значительное влияние на результат окажет взаимное расположение оси инжекции макрочастицы и оси наблюдения NPA. Поперечное смещение макрочастицы

Рис. 5. (Цветной онлайн) k(z, E) при нескольких значениях питч-угла $\theta = 70^{\circ}$ (кривая 1), $\theta = 80^{\circ}$ (кривая 2), $\theta = 85^{\circ}$ (кривая 3), $\theta = 87^{\circ}$ (кривая 4), $\theta = 89^{\circ}$ (кривая 5) для: (a) – E = 50 кэВ; (b) – E = 100 кэВ

относительно области обзора NPA за время испарения составит $Lp \times \sin \varphi$, где Lp – глубина проникновения макрочастицы в плазму. Так, если угол между осью инжекции и осью наблюдения NPA $\varphi = 30^{\circ}$, что может реализовываться при инжекции макрочастицы вдоль большого радиуса установки и при расположении NPA для измерения потоков нейтрализовавшихся протонов с питч-углом 70°, а глубина проникновения приблизительно 200 мм, поперечное смещение будет достигать 100 мм. В связи с этим, при проведении абсолютных РСХ измерений необходимо, во-первых, ограничить смещение пеллетного облака в области обзора NPA, например, за счет уменьшения угла между направлением наблюдения и направлением инжекции, а во-вторых, обеспечить непрерывное отслеживание расположения пеллетного облака в области обзора NPA.

7. Выводы. Экспериментальные и расчетные данные о скорости испарения и распределениях излучения водорода и углерода вблизи испаряющихся макрочастиц из полистирола, полученные на гелиотроне LHD, использованы для построения приближенных модельных пространственных распределений атомов и ионов углерода и водорода в пеллетном облаке. Это позволило рассчитать долю быстрых протонов $F_0(E)$, нейтрализующихся в пеллетном облаке, информация о которой необходима для интерпретации сигналов РСХ диагностики. Расчет выполнен для диапазона энергий E = (50-1000) кэВ при питч-углах $\geq 70^{\circ}$.

Показано, что зарядовый состав облака достаточно быстро меняется по мере удаления от макрочастицы, что существенно влияет на расчетные значения $F_0(E)$. Эти значения могут заметно отличаться от значений, использованных в более ранних работах в приближении постоянного однородного по облаку ионизационного состава.

В работе показано, что при энергиях протона в диапазоне 50–200 кэВ необходимо учитывать ослабление потока быстрых протонов в результате нейтрализации при многократных пересечениях облака, а также потери энергии протонами вдоль траектории. При энергии 50 кэВ наблюдается термализация протонов. При энергии 100 кэВ потери энергии протонов не превышают 0.4–12 % при питч-углах 70°–89° соответственно. Полученные результаты демонстрируют возможность реализовать абсолютные РСХ-измерения энергетических распределений быстрых протонов в диапазоне энергий 100 кэВ < E < 1000 зВ.

Необходимость контроля ионизационного состава и структуры облака ограничивает локализацию области обзора детектора нейтральных атомов. В углеводородных пеллетных облаках доступная для экспериментального контроля ионизационного состава часть облака располагается в пределах ±30 мм от положения макрочастицы вдоль магнитного поля. Для оптимальной геометрии абсолютных РСХ измерений предпочтительно совместить ось инжекции с осью наблюдения NPA. Для относительных измерений оси инжекции и наблюдения могут быть расположены под углом друг к другу.

Полученные результаты могут быть полезны при проектировании и применении РСХ-диагностики быстрых протонов с инжекцией углеводородных макрочастиц, что актуально для всех крупных установок с магнитным удержанием высокотемпературной плазмы, оснащенных нагревными пучками нейтральных атомов NBI с энергиями 100 кэВ и более, а также использующих высокочастотный нагрев малой добавки ионов на гармонике ионноциклотронной частоты. Финансирование работы. Работа поддержана Государственной корпорацией по атомной энергии "Росатом" и Министерством науки и высшего образования Российской Федерации в рамках Федерального проекта 3 (U3), проект # FSEG-2023-0018 "Разработка и создание систем струйной и пеллет инжекции с повышенными производительностью и ресурсом".

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- R. K. Fisher, J. S. Leffler, A. M. Howald, and P. B. Parks, Fusion Technol. 13, 536 (1988).
- S. S. Medley, D. K. Mansfield, A. L. Roquemore, R. K. Fisher, H. H. Duong, J. M. McChesney, P. B. Parks, M. P.Petrov, A. V. Khudoleev, and N. N. Gorelenkov, Rev. Sci. Instrum. 67, 3122 (1996).
- P. R. Goncharov, T. Ozaki, S. Sudo, N. Tamura, and D. V. Kalinina, Tespel Group, LHD Experimental Group, E. A. Veshchev and V. Yu. Sergeev, Fusion Sci.Technol. 50, 222 (2006).
- J. M. McChesney, P. B. Parks, R. K. Fisher, and R. E. Olson, Phys.Plasmas 4, 381 (1997).
- P.R. Goncharov, T. Saida, N. Tamura, T. Ozaki, M. Sasao, M. Isobe, S. Sudo, K.V. Khlopenkov, and LHD Experimental Groups I/II, A.V. Krasilnikov, V. Yu. Sergeev, Rev. Sci. Instrum. 67, 1869 (2003).
- P. R. Goncharov, T. Ozaki, S. Sudo, N. Tamura, I. Yu. Tolstikhina, and V. Yu. Sergeev, Rev. Sci. Instrum. 79, 10F312-1 (2008).
- I. A. Sharov, V. Y. Sergeev, I. V. Miroshnikov, N. Tamura, B. V. Kuteev, and S. Sudo, Rev. Sci. Instrum. 86, 043505 (2015).
- I.A. Sharov, V.Y. Sergeev, I.V. Miroshnikov, B.V. Kuteev, N. Tamura, and S. Sudo, Tech. Phys. Lett. 44, 384 (2018).
- I. A. Sharov, V. Yu. Sergeev, I. V. Miroshnikov, N. Tamura, and S. Sudo, Plasma Phys. Control. Fusion 63, 065002 (2021).
- N. Tamura, V.Y. Sergeev, D.V. Kalinina, I.V. Miroshnikov, K. Sato, I.A. Sharov, O.A. Bakhareva, D.M. Ivanova, V.M. Timokhin, S. Sudo, and B. V. Kuteev, Rev. Sci. Instrum. **79**, 10F541 (2008).
- A. Matsuyama, F. Koechl, B. Pegourie, R. Sakamoto, G. Motojima, and H. Yamada, Nucl. Fusion 52(12), 123017 (2012).
- O. A. Bakhareva, V. Y. Sergeev, and I. A. Sharov, JETP Lett. **117**, 207 (2023).
- O. A. Bakhareva, V. Y. Sergeev, and I. A. Sharov, JETP Lett. 118, 730 (2023).
- Н. Мотт, Г. Месси, *Теория атомных столкновений*, Мир, М. (1969).