Сверхпроводящие состояния в металлах с тороидальным порядком

 $B. \Pi. Минеев^{1)}$

Институт теоретической физики имени Л.Д.Ландау, 142432 Черноголовка, Россия

Поступила в редакцию 9 июля 2024 г. После переработки 9 июля 2024 г. Принята к публикации 18 июля 2024 г.

В работе развита теория сверхпроводящих состояний в металлах с тороидальной симметрией.

DOI: 10.31857/S0370274X24080157, EDN: NKKEYU

I. Введение. На возможность магнитоэлектрического эффекта в некоторых антиферромагнетиках впервые было указано в первом издании "Электродинамики сплошных сред" Л. Д. Ландау и Е.М.Лифшица [1]. Это явление обусловлено специфической кристаллической симметрией данного материала, не включающей операции обращения времени *R* и пространственной инверсии *I*, но содержащей произведение этих операций RI. Термодинамический потенциал такого вещества должен включать члены, пропорциональные произведениям первых степеней компонент электрического и магнитного поля ($\Phi \sim EH$). И.Е.Дзялошинским было замечено [2], что такими свойствами обладает Cr_2O_3 – антиферромагнетик, в котором, в отличие от обычных двух или более подрешеточных антиферромагнетиков, противоположно направленные магнитные моменты хрома находятся в одной и той же кристаллографической элементарной ячейке. Точечная группа симметрии $\rm Cr_2O_3$ $\mathbf{D}_{3d}(\mathbf{D}_3) = (E, C_3, C_3^2, 3u_2, 3\sigma_d R, 2S_6 R, IR)$ включает произведение RI, но не содержит операции обращения времени и инверсии по отдельности. Немного погодя Д. Н. Астров [3] открыл магнитоэлектрический эффект в этом соединении.

Несмотря на отсутсвие полной намагниченности некоторые из антиферромагнитных магнитоэлектриков обладают магнитооптическим свойством вращения плоскости поляризации при отражении линейно поляризованного света (эффект Керра) [4, 5]. В Cr_2O_3 этот эффект наблюдался в работах Б. Б. Кричевцова с соавторами [6, 7]. Новый интерес к этому типу явлений возник после экспериментов по рассеянию нейтронов с переворотом спина на недодопированном высокотемпературном сверхпроводящем соединении $YBa_2Cu_3O_{6+x}$ [8], в котором было обнаружено нарушение симметрии по отношению к обращению времени без возникновения спонтанной намагниченности и нарушения трансляционной инвариантности. Затем на том же соединении группой А. Капитульника был продемонстрирован эффекта Керра [9]. Эксперименты были интерпретированы С. Varma в развитой им модели "кольцевых токов" (см. недавний обзор [10]).

В то же время в результате указанных наблюдений возникла необходимость описания сверхпроводящего состояния в веществах с нарушенной пространственной и временной четностью, но обладающих симметрией по отношению к произведению этих преобразований, которые нынче принято называть соединениями с тороидальным порядком [11]. Некоторые аспекты этой проблемы обсуждались в работах [12-14] в рамках однозонной 2D модели в приложении к сверхпроводящему состоянию с d-спариванием, а также в модели одномерного металла, развитой в работе S. Sumita и Y. Yanase [15]. В настоящей работе представлен более общий подход к описанию сверхпроводимости в антиферромагнитных материалах со структурой подобной Cr₂O₃, т.е. с магнитными моментами, расположенными в пределах одной кристаллографической элементарной ячейки таким образом, что кристалл не обладает пространственной и временной четностью, но инвариантен относительно произведения этих преобразований. Несколько примеров структур такого типа рассматривались в работе J. Orenstein'a [16] в связи с возможными типами упорядочения магнитных моментов, создаваемых кольцевыми токами в YBCO.

Сверхпроводящие соединения с такой структурой в настоящее время неизвестны, хотя имеется некоторое количество проводящих веществ с тороидальным порядком, например, UNi₄B [17] и Mn₂Au [18]. С надеждой на будущие открытия здесь развит симметрийный подход к описанию сверхпроводящих состояний в материалах этого типа. Это проделано на примере орторомбического антиферромагнетика (см. рис. 1) с точечной группой симметрии $\mathbf{D}_{2h}(\mathbf{D}_2)$, позволяющем продемонстрировать особенности тео-

¹⁾e-mail: mineev@itp.ac.ru

Рис. 1. Магнитные моменты антиферромагнетика с точечной группой симметрии $\mathbf{D}_{2h}(\mathbf{D}_2)$ расположены в элементарной ячейке в плоскости y = b/2

рии сверхпроводящих состояний в веществах с тороидальным порядком. Примеры тороидальных антиферромагнетиков с другой симметрией приведены в Приложении.

Статья имеет следующую структуру. Общие симметрийные свойства тороидальных сверхпроводящих состояний перечислены в следующем разделе. Затем в третьем разделе описаны модификации стандартного БКШ подхода для металлов с тороидальным порядком. В Заключении перечислены результаты работы и указаны возможные дальнейшие обобщения развитого подхода. В Приложении разобраны несколько примеров тороидальных антиферромагнетиков с точечной симметрией, отличной от рассмотренной в основной части.

II. Структура сверхпроводящих состояний. Точечная группа симметрии антиферромагнетика с орторомбической кристаллической симметрией $\mathbf{D}_{2h}(\mathbf{D}_2)$ включает следующие элементы:

$$E, C_{2x}, C_{2y}, C_{2z}, R\sigma_x, R\sigma_y, R\sigma_z, RI.$$
(1)

В металле с такой симметрией зависимость энергии от волнового вектора **k** в каждой энергетической зоне представляет сумму четной и нечетной функций

$$\varepsilon_{\mathbf{k}} = \varepsilon_{\mathbf{k}}^e + \varepsilon_{\mathbf{k}}^o, \quad \varepsilon_{\mathbf{k}}^e = f(k_x^2, k_y^2, k_z^2), \quad (2)$$

$$\varepsilon_{\mathbf{k}}^{o} = \gamma \sin k_x a \sin k_y b \sin k_z c, \qquad (3)$$

инвариантных относительно всех операций точечной группы $\mathbf{D}_{2h}(\mathbf{D}_2)$. Соответствующая Ферми поверхность, определяемая уравнением

$$\varepsilon_{\mathbf{k}} = \varepsilon_F,$$
 (4)

несимметрична ввиду того, что $\varepsilon_{\mathbf{k}} \neq \varepsilon_{-\mathbf{k}}$.

Гамильтониан в уравнении Шредингера для электрона в таком металле коммутирует с произведением операций пространственной и временной инверсии RI. Из чего следует, что каждой энергии $\varepsilon_{\mathbf{k}}$ соответствует две спинорные собственные функции $\psi_{\mathbf{k}\alpha}(\mathbf{r})$ и $RI\hat{\psi}_{\mathbf{k}\alpha}(\mathbf{r})$, ортогональные друг другу.

Магнитоэлектрическая часть термодинамического потенциала имеет вид

$$\Phi_{ME} = -\alpha_x E_x H_x - \alpha_y E_y H_y - \alpha_z E_z H_z.$$

Орторомбическая группа $\mathbf{D}_{2h}(\mathbf{D}_2)$ имеет четыре одномерных представления. Отсутствие симметрии в отношении пространственной инверсии означает, что все сверхпроводящие состояния состоят из суммы синглетного и триплетного состояний. Соответствующие параметры порядка имеют вид

$$\Delta_{\alpha\beta}(\mathbf{k}) = \Delta\Phi_{\alpha\beta}(\mathbf{k}) = \Delta\left[\phi^s_{\mathbf{k}}i\sigma^y_{\alpha\beta} + (\phi^t_{\mathbf{k}}\boldsymbol{\sigma}_{\alpha\gamma})i\sigma^y_{\gamma\beta}\right].$$
(5)

Здесь, $\hat{\boldsymbol{\sigma}} = (\hat{\sigma}^x, \hat{\sigma}^y, \hat{\sigma}^z)$ – матрицы Паули. Функции $\phi^s_{\mathbf{k}}$ и $\phi^t_{\mathbf{k}}$ для всех четырех представлений $\Gamma = A, B_3, B_2, B_1$ выписаны в таблице:

Г	$\phi^s_{f k}$	$\phi^t_{f k}$
А	$a\hat{k}_x^2 + b\hat{k}_y^2 + c\hat{k}_z^2$	$i(\hat{k}_x\hat{x} + \hat{k}_y\hat{y} + \hat{k}_y\hat{z})$
B_3	$i\hat{k}_y\hat{k}_z$	$\hat{k}_z \hat{y} + \hat{k}_y \hat{z}$
B_2	$i\hat{k}_x\hat{k}_z$	$\hat{k}_z \hat{x} + \hat{k}_x \hat{z}$
B_1	$i\hat{k}_x\hat{k}_y$	$\hat{k}_y \hat{x} + \hat{k}_x \hat{y}$

Здесь необходимо иметь в виду, что каждый член в каждой клетке таблицы может включать некоторую амплитуду (вещественный численный множитель или вещественную функцию квадратов компонент единичного волнового вектора $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$). Например, векторная функция для триплетного состояния A имеет вид $i(f\hat{k}_x\hat{x} + g\hat{k}_y\hat{y} + h\hat{k}_y\hat{z})$, где $f = f(\hat{k}_x^2, \hat{k}_y^2, \hat{k}_z^2)$ и т.д.

III. Теория БКШ для ферроэлектрических металлов.

Гамильтониан, включающий взаимодействие электронов с противоположными импульсами, имеет вид

$$H = H_0 + H_{\text{int}} = \sum_{\mathbf{k}} (\xi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}^o) a_{\mathbf{k}\alpha}^+ a_{\mathbf{k}\alpha} + \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}'} V_{\alpha\beta,\lambda\mu}(\mathbf{k},\mathbf{k}') a_{-\mathbf{k}\alpha}^+ a_{\mathbf{k}\alpha}^+ a_{\mathbf{k}'\lambda} a_{-\mathbf{k}'\mu}, \qquad (6)$$

где

$$\xi_{\mathbf{k}} = \varepsilon_{\mathbf{k}}^e - \mu, \tag{7}$$

и в парном взаимодействии

$$V_{\alpha\beta,\lambda\mu}(\mathbf{k},\mathbf{k}') = -V_{\Gamma}\Phi_{\alpha\beta}(\mathbf{k})\Phi^{\dagger}_{\lambda\mu}(\mathbf{k}')$$
(8)

Письма в ЖЭТФ том 120 вып. 3-4 2024

оставлен только член, относящийся к неприводимому представлению Г, соответствующему сверхпроводящему состоянию с максимальной критической температурой. Нормальная часть гамильтониана может быть переписана как

$$H_{0} = \frac{1}{2} \sum_{\mathbf{k}} (\xi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}^{o}) a_{\mathbf{k}\alpha}^{+} a_{\mathbf{k}\alpha} - \qquad (9)$$
$$- \frac{1}{2} \sum_{\mathbf{k}} (\xi_{-\mathbf{k}} + \varepsilon_{-\mathbf{k}}^{o}) a_{-\mathbf{k}\alpha} a_{-\mathbf{k}\alpha}^{+} + \frac{1}{2} \sum_{\mathbf{k}\alpha} (\xi_{-\mathbf{k}} + \varepsilon_{-\mathbf{k}}^{o}).$$

kα

После стандартного преобразования взаимодействия, соответствующего приближению среднего поля, гамильтониан приобретает вид

$$H = \frac{1}{2} \sum_{\mathbf{k}} (\xi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}^{o}) a_{\mathbf{k}\alpha}^{+} a_{\mathbf{k}\alpha} - \frac{1}{2} \sum_{\mathbf{k}} (\xi_{-\mathbf{k}} + \varepsilon_{-\mathbf{k}}^{o}) a_{-\mathbf{k}\alpha} a_{-\mathbf{k}\alpha}^{+} + \frac{1}{2} \sum_{\mathbf{k}} \Delta_{\mathbf{k},\alpha\beta} a_{\mathbf{k}\alpha}^{+} a_{-\mathbf{k}\beta}^{+} + \frac{1}{2} \sum_{\mathbf{k}} \Delta_{\mathbf{k},\alpha\beta}^{\dagger} a_{-\mathbf{k}\alpha} a_{\mathbf{k}\beta} + \frac{1}{2} \sum_{\mathbf{k}\alpha} (\xi_{-\mathbf{k}} + \varepsilon_{-\mathbf{k}}^{o}) + \frac{1}{2} \sum_{\mathbf{k}} \Delta_{\mathbf{k},\alpha\beta} F_{\mathbf{k},\beta\alpha}^{+}, \quad (10)$$

где матрица параметра порядка

$$\Delta_{\mathbf{k},\alpha\beta} = -\sum_{\mathbf{k}'} V_{\beta\alpha,\lambda\mu}(\mathbf{k},\mathbf{k}') F_{\mathbf{k}',\lambda\mu}$$
(11)

выражается через "аномальное среднее"

$$F_{\mathbf{k},\alpha\beta} = \langle a_{\mathbf{k}\alpha} a_{-\mathbf{k}\beta} \rangle.$$

Здесь угловые скобки (...) означают последовательные квантовомеханическое и тепловое усреднение.

Вводя операторы

$$A_{\mathbf{k},i}^{+} = (a_{\mathbf{k}\alpha,}^{+}a_{-\mathbf{k}\alpha}), \qquad A_{\mathbf{k},i} = \begin{pmatrix} a_{\mathbf{k}\alpha} \\ a_{-\mathbf{k}\alpha}^{+} \end{pmatrix}, \qquad (12)$$

перепишем уравнение (10) в более компактном виде

$$H = \frac{1}{2} \sum_{\mathbf{k}} \varepsilon_{\mathbf{k},ij} A^{+}_{\mathbf{k},i} A_{\mathbf{k},j} + \frac{1}{2} \sum_{\mathbf{k}\alpha} (\xi_{\mathbf{k}} - \varepsilon^{o}_{\mathbf{k}}) + \frac{1}{2} \sum_{\mathbf{k}} \Delta_{\mathbf{k},\alpha\beta} F^{+}_{\mathbf{k},\beta\alpha}.$$
 (13)

Здесь

$$\varepsilon_{\mathbf{k},ij} = \begin{pmatrix} (\xi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}^{o})\delta_{\alpha\beta} & \Delta_{\mathbf{k},\alpha\beta} \\ \Delta_{\mathbf{k},\alpha\beta}^{\dagger} & (-\xi_{\mathbf{k}} + \varepsilon_{\mathbf{k}}^{o})\delta_{\alpha\beta} \end{pmatrix}.$$
 (14)

Диагонализуя гамильтониан посредством преобразования Боголюбова

$$A_{\mathbf{k},i} = U_{ij}B_{\mathbf{k},j}, \qquad U_{ij} = \begin{pmatrix} u_{\mathbf{k},\alpha\beta} & v_{\mathbf{k},\alpha\beta} \\ v_{\mathbf{k},\alpha\beta}^{\dagger} & -u_{\mathbf{k},\alpha\beta} \end{pmatrix}, \quad (15)$$

Письма в ЖЭТФ том 120 вып. 3-4 2024

$$u_{\mathbf{k},\alpha\beta} = \frac{\xi_{\mathbf{k}} + E_{\mathbf{k}}^{e}}{\sqrt{(\xi_{\mathbf{k}} + E_{\mathbf{k}}^{e})^{2} + \Delta_{\mathbf{k}}^{2}}} \delta_{\alpha\beta}, \qquad (16)$$

$$v_{\mathbf{k},\alpha\beta} = \frac{\Delta_{\alpha\beta}(\mathbf{k})}{\sqrt{(\xi_{\mathbf{k}} + E_{\mathbf{k}}^{e})^{2} + \Delta_{\mathbf{k}}^{2}}},$$
(17)

$$E^{e}_{\mathbf{k}} = \sqrt{\xi^{2}_{\mathbf{k}} + \Delta^{2}_{\mathbf{k}}}, \qquad \Delta^{2}_{\mathbf{k}} = \frac{1}{2} \mathrm{Tr} \hat{\Delta}^{\dagger}(\mathbf{k}) \hat{\Delta}(\mathbf{k}), \quad (18)$$

получим

$$\frac{1}{2}\sum_{\mathbf{k}}\varepsilon_{\mathbf{k},ij}A_{\mathbf{k},i}^{+}A_{\mathbf{k},j} = \frac{1}{2}\sum_{\mathbf{k}}E_{\mathbf{k},ij}B_{\mathbf{k},i}^{+}B_{\mathbf{k},j},\qquad(19)$$

где

$$E_{\mathbf{k},ij} = \begin{pmatrix} (\varepsilon_{\mathbf{k}}^{o} + E_{\mathbf{k}}^{e})\delta_{\alpha\beta} & 0\\ 0 & (\varepsilon_{\mathbf{k}}^{o} - E_{\mathbf{k}}^{e})\delta_{\alpha\beta} \end{pmatrix}.$$
 (20)

Таким образом, энергия возбуждений дается выражением

$$E_{\mathbf{k}} = \varepsilon^o_{\mathbf{k}} + E^e_{\mathbf{k}}.$$
 (21)

Соответствующая плотность состояний определяется выражением

$$N(E) = 2 \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \delta(E - E_{\mathbf{k}}).$$
 (22)

N(E = 0) = 0 на поверхности Ферми равна нулю только для А состояний. Все остальные сверхпроводящие состояния **бесщелевые** $N(E = 0) \neq 0$, т.е. со спектром возбуждений без энергетической щели. Последнее свойство, в частности, означает, что для таких состояний отношение теплоемкости к температуре $(C(T)/T)_{T\to 0} \neq 0$ не обращается в нуль в совершенно чистом металле без примесей и дефектов упаковки.

Параметр порядка определяется уравнением (11)

$$\Delta_{\mathbf{k},\alpha\beta} = -\sum_{\mathbf{k}'} V_{\beta\alpha,\lambda\mu}(\mathbf{k},\mathbf{k}') \langle a_{\mathbf{k}\lambda} a_{-\mathbf{k}\mu} \rangle.$$
(23)

Применяя к этому выражению боголюбовское преобразование, получим

$$\Delta_{\mathbf{k},\alpha\beta} = \tag{24}$$

$$= -\int \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}} V_{\beta\alpha,\lambda\mu}(\mathbf{k},\mathbf{k}') \frac{1 - f_{\mathbf{k}'} - f_{-\mathbf{k}'}}{2E_{\mathbf{k}'}^{e}} \Delta_{\lambda\mu}(\mathbf{k}') =$$
$$= -\int \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}} V_{\beta\alpha,\lambda\mu}(\mathbf{k},\mathbf{k}') \frac{\tanh\frac{E_{\mathbf{k}'}}{2T} + \tanh\frac{E_{-\mathbf{k}'}}{2T}}{4E_{\mathbf{k}'}^{e}} \Delta_{\lambda\mu}(\mathbf{k}').$$

Здесь были использованы симметрийные свойства параметра порядка и выражение для чисел заполнения возбуждений $\langle b^+_{{f k}lpha}b_{{f k}eta}
angle = f_{{f k}}\delta_{lphaeta}$ через фермиевскую функцию распределения

$$f_{\mathbf{k}} = f(E_{\mathbf{k}}) = \frac{1}{\exp((\varepsilon_{\mathbf{k}}^o + E_{\mathbf{k}}^e)/T) + 1}.$$
 (25)

6*

При $T \to T_c$ можно пренебречь $\Delta_{\mathbf{k}}^2$ в $E_{\mathbf{k}}^e$ в уравнении (24). Оценивая интеграл в логарифмическом приближении, приходим к выражению для критической температуры, похожему на обычную формулу БКШ

$$T_c \approx \varepsilon_0 \exp\left(-\frac{1}{\tilde{N}_0 V_{\Gamma}}\right).$$
 (26)

Здесь ε_0 – энергия обрезания для парного взаимодействия и \tilde{N}_0 – плотность состояний, усредненная по Ферми поверхности с весом, соответствующим угловой зависимости функций для данного непреводимого представления.

IV. Заключение. В работе представлена теория сверхпроводимости в металлах с тороидальным упорядочением с точечными группами симметрии с одномерными представлениями. Развитый подход допускает обобщения на случаи многозонных структур и сверхпроводящих состояний, соответствующих многомерным представлениям, а также веществ с более сложным мультипольным порядком.

Приложение. Сверхпроводящие параметры порядка в тороидальных металлах

Антиферромагнитные структуры, соответствующие точечным группам симметрии $\mathbf{D}_{2h}(\mathbf{C}_{2v})$, $\mathbf{C}_{2h}(\mathbf{C}_2)$, $\mathbf{C}_{2h}(\mathbf{C}_2)$, $\mathbf{C}_{2h}(\mathbf{C}_{\sigma_x})$, изображены на рис. 2. Ниже приведены функции неприводимых представлений соответствующих сверхпроводящих состояний.

Рис. 2. (а) – Плоскость y = b/2 элементарной ячейки антиферромагнетика с точечной группой симметрии $\mathbf{D}_{2h}(\mathbf{D}_2)$; (b) – Плоскость y = b/2 элементарной ячейки антиферромагнетика с точечной группой симметрии $\mathbf{C}_{2h}(\mathbf{C}_2)$; (c) – Плоскость y = b/2 элементарной ячейки антиферромагнетика с точечной группой симметрии $\mathbf{C}_{2h}(\mathbf{C}_{\sigma_x})$. Направление моментов отклонено от плоскости рисунка y = b/2 в противоположных направлениях

1. Группа $\mathbf{D}_{2h}(\mathbf{C}_{2v})$. Эта группа состоит из элементов

$$E, C_{2y}, \sigma_x, \sigma_z, RC_{2x}, RC_{2z}, R\sigma_y, RI.$$
(A.1)

Нечетная часть зонной энергии электронов имеет вид

$$\varepsilon_{\mathbf{k}}^{o} = \gamma \sin k_{y} b. \tag{A.2}$$

Магнитоэлектрическая часть термодинамического потенциала суть

$$\Phi_{ME} = -\alpha_{xz} E_x H_z - \alpha_{zx} E_z H_x.$$

Ниже перечислены функции неприводимых представлений для сверхпроводящих состояний данной группы:

Г	$\phi^s_{f k}$	$\phi^t_{f k}$
А	$a\hat{k}_x^2 + b\hat{k}_y^2 + c\hat{k}_z^2$	$i(\hat{k}_z\hat{x} + \hat{k}_x\hat{z})$
B_3	$\hat{k}_y\hat{k}_z$	$i(\hat{k}_y\hat{x} + \hat{k}_x\hat{y})$
B_2	$\hat{k}_x \hat{k}_z$	$i(\hat{k}_x\hat{x} + \hat{k}_y\hat{y} + \hat{k}_z\hat{z})$
B_1	$\hat{k}_x\hat{k}_y$	$i(\hat{k}_z\hat{y}+\hat{k}_y\hat{z})$

Напомним, что каждый член в каждой клетке таблицы может включать некоторую амплитуду (вещественный численный множитель или вещественную функцию квадратов компонент единичного волнового вектора $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$).

2. Группа $C_{2h}(C_2)$. Эта группа является подгруппой группы, рассмотренной в предыдущем разделе. Она состоит из элементов

$$E, C_{2y}, R\sigma_y, RI.$$
 (A.3)

Нечетная часть зонной энергии электронов и магнитоэлектрическая часть термодинамического потенциала даются формулами

$$\varepsilon^{o}_{\mathbf{k}} = \gamma \sin k_{y} b + \delta \sin k_{x} a \sin k_{y} b \sin k_{z} c. \tag{A.4}$$

$$\Phi_{ME} = -\alpha_{xz}E_xH_z - \alpha_{zx}E_zH_x - \alpha_xE_xH_x - \alpha_yE_yH_y - \alpha_zE_zH_z.$$

Функции неприводимых представлений для сверхпроводящих состояний данной группы перечислены в таблице:

Г	$\phi^s_{f k}$	$\phi^t_{f k}$
Α	$a\hat{k}_x^2 + b\hat{k}_y^2 + c\hat{k}_z^2 + d\hat{k}_x\hat{k}_z$	$i(\hat{k}_z\hat{x} + \hat{k}_x\hat{z} + \hat{k}_x\hat{x} + \hat{k}_y\hat{y} + \hat{k}_z\hat{z})$
В	$a\hat{k}_x\hat{k}_y + b\hat{k}_y\hat{k}_z$	$i(\hat{k}_z\hat{y}+\hat{k}_y\hat{z}+\hat{k}_y\hat{x}+\hat{k}_x\hat{y})$

Еще раз подчеркнем, что каждый член в каждой клетке таблицы может включать некоторую амплитуду.

3. Группа $C_{2h}(C_{\sigma_x})$. Это другая подгруппа группы $D_{2h}(C_{2v})$. Она состоит из элементов

$$E, \sigma_x, RC_{2x}, RI. \tag{A.5}$$

Нечетная часть зонной энергии электронов суть

$$\varepsilon_{\mathbf{k}}^{o} = \gamma \sin k_{y} b. \tag{A.6}$$

Письма в ЖЭТФ том 120 вып. 3-4 2024

Магнитоэлектрическая часть термодинамического потенциала имеет вид

$$\Phi_{ME} = -\alpha_{xy}E_xH_y - \alpha_{yx}E_yH_x - \alpha_{xz}E_xH_z - \alpha_{zx}E_zH_x.$$

Функции неприводимых представлений для сверхпроводящих состояний данной группы перечислены в таблице:

	Γ	$\phi^s_{f k}$	$\phi^t_{f k}$
ſ	А	$a\hat{k}_x^2 + b\hat{k}_y^2 + c\hat{k}_z^2 + d\hat{k}_y\hat{k}_z$	$i(\hat{k}_y\hat{x}+\hat{k}_x\hat{y}+\hat{k}_z\hat{x}+\hat{k}_x\hat{z})$
	В	$a\hat{k}_x\hat{k}_y + b\hat{k}_x\hat{k}_z$	$i(\hat{k}_z\hat{y} + \hat{k}_y\hat{z} + \hat{k}_x\hat{x} + \hat{k}_y\hat{y} + \hat{k}_z\hat{z})$

Каждый член в каждой клетке таблицы может включать некоторую амплитуду.

Финансирование работы. Данная работа финансировалась за счет средств бюджета института. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов. Автор данной работы заявляет, что у него нет конфликта интересов.

- 1. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Гостехиздат, М. (1958).
- I. E. Dzyaloshinskii, JETP 37, 881 (1959) [Soviet Phys. JETP 10, 628 (1960)].
- D. N. Astrov, ZhETF 40, 1035 (1961) [Sov. Phys. JETP 13, 729 (1961)].
- W.F. Brown, Jr., S. Shtrikman, and D. Treves, J. Appl. Phys. 34, 1233 (1963).

- R. M. Hornreich and S. Shtrikman, Phys. Rev. 171, 1065 (1968).
- B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev, J. Phys. Condens. Matter 5, 8233 (1993).
- B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev, Phys. Rev. Lett. **76**, 4628 (1996).
- B. Fauqué, Y. Sidis, V. Hinkov, S. Pailhès, C. T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett. 96, 197001 (2006).
- J. Xia, E. Schemm, G. Deutscher, S.A. Kivelson, D.A. Bonn, W.N. Hardy, R. Liang, W. Siemons, G. Koster, M. M. Fejer, and A. Kapitulnik, Phys. Rev. Lett. 100, 127002 (2008).
- 10. C. M. Varma, Rev. Mod. Phys. 92, 031001 (2020).
- S. Hayami, H. Kusunose, and Y. Motome, Phys. Rev. B 90, 024432 (2014).
- E. Berg, C.-C. Chen, and S.A. Kivelson, Phys. Rev. Lett. 100, 027003 (2008).
- A. Allais and T. Senthil, Phys. Rev. B 86, 045118 (2012).
- A. Amin, H. Wu, T. Shishidou, and D. F. Agterberg, Phys. Rev. B 109, 024502 (2024).
- S. Sumita and Y. Yanase, Phys. Rev. B 93, 224507 (2016).
- 16. J. Orenstein, Phys. Rev. Lett. 107, 067002 (2011).
- H. Saito, K. Uenishi, N. Miura, Ch. Tabata, H. Hidaka, T. Yanagisawa, and H. Amitsuka, J. Phys. Soc. Jpn. 87, 033702 (2018).
- O. Fedchenko, L. Smejkal, M. Kallmayer, Y. Lytvynenko, K. Medjanik, S. Babenkov, D. Vasilyev, M. Klaeui, J. Demsar, G. Schönhense, M. Jourdan, J. Sinova, and H.J. Elmers, J. Phys. Condens. Matter **34**, 425501 (2022).