Optically controlled fine-tuning phase shift cell based on thin-film Ge₂Sb₂Te₅ for light beam phase modulation

A. V. Kiselev¹⁾, A. A. Nevzorov, A. A. Burtsev, V. A. Mikhalevsky, N. N. Eliseev, V. V. Ionin, A. A. Lotin

National Research Centre "Kurchatov Institute", 140700 Shatura, Russia

Submitted 18 July 2024 Resubmitted 31 July 2024 Accepted 6 August 2024

Presented the experimental study of free-space optical control of the optical beam phase shift caused by the formation of a layered structure in an elementary controllable cell made of phase-change material $Ge_2Sb_2Te_5$ subjected to the controlling effect of pulsed laser radiation. The phase change of the signal optical beam passing through the controlled cell from phase-change material relative to the control beam in the Jamin interferometer is demonstrated.

DOI: 10.31857/S0370274X24090117, EDN: HVIZDC

Ge₂Sb₂Te₅ has strong contrast optical and electrical properties between amorphous and crystalline states [1–3]. Because of the high stability of both phase states, this material has been successfully used in rewritable optical storage media and electronic non-volatile memory devices for many years [4, 5]. The unique capabilities of phase-change material (PCM) have already been demonstrated in meta-optical devices, where an easy-to-fabricate PCM layer as a functional material [6]. Efficient prototypes of PCM-based devices providing light control have been demonstrated [7–9]. A comprehensive study of the control of the phase of reflected and transmitted light during switching of a phase changeable material cell is necessary.

Experimental studies (Fig. 1) have shown that using 100 nm films it is possible to achieve a dynamic range of $\pm 2/5\pi$ for tuning the phase of the light wave when controlling the state of the cell by nanosecond laser pulses [10]. Structural properties were analyzed by Raman spectra [11, 12]. This roughly coincides with the theoretical estimate obtained from the refractive indices for different phases of the material measured by ellipsometry methods [13]. At the same time, 50 nm films allow to achieve approximately half the phase tuning range. The PCM-based technology is mature and perfectly scalable [14]. Based on the experimentally investigated unit cell, it is possible to construct a phase shifter for the conversion of an optical beam of arbitrary aperture. If a small and fast adjustment of the phase optical transparencies is required, the proposed method of controlling the optical beam front can be very promising.

Funding. This work was supported by the Russian Science Foundation under Grant # RSF 23-29-00878.

Conflict of interest. The authors of this work declare that they have no conflicts of interest.

- S. Raoux and M. Wutting, *Phase change materials. Science and applications*, Springer Science + Business Media, N.Y. (2009), 450 p.
- A.V. Kolobov and J. Tominaga, Chalcogenides: Metastability and Phase Change Phenomena, Springer-Verlag, Berlin, Heidelberg (2012), 284 p.
- S. G. Sarwat, Materials science and Technology 33(16), 1890 (2017).
- E. R. Meinders, A. V. Mijiritskii, L. van Pieterson, and M. Wuttig, *Optical data storage: Phase-change media and recording*, Springer Science & Business Media, Dordrecht, The Netherlands (2006).
- A. Redaelli, *Phase Change Memory. Device Physics, Re*liability and Applications, Springer International, Cham, Switzerland (2018).
- T. Cao and M. Cen, Advanced Theory and Simulations 2(8), 1900094 (2019).
- P. Guo, A. M. Sarangan, and I. Agha, Appl. Sci. 9(3), 530 (2019).
- S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, A. Krasnok, Y. Kiarashinejad, M. Zandehshahvar, A. Alú, and A. Adibi, Nanophotonics 9(5), 1189 (2020).
- K. V. Sreekanth, M. ElKabbash, V. Caligiuri, R. Singh, A. De Luca, and G. Strangi, *New Directions in Thin Film Nanophotonics*, Springer, Singapore (2019).
- A. V. Kiselev, V. V. Ionin, A. A. Burtsev, N. N. Eliseev, V. A. Mikhalevsky, N. A. Arkharova, D. N. Khmelenin,

¹⁾e-mail: kiselev.ilit.ras@gmail.com

Fig. 1. (Color online) Phase shift fine tuning in thin-film PCM optically controlled cell: (a) $-50 \text{ nm Ge}_2\text{Sb}_2\text{Te}_5$ cell with maximum shift $\Delta \approx \pi/5$ ($2\pi \cdot 20/220$) and (b) $-100 \text{ nm Ge}_2\text{Sb}_2\text{Te}_5$ cell with maximum shift $\Delta \approx \pi/2$, 5 ($2\pi \cdot 40/210$)

and A.A. Lotin, Optics & Laser Technology. **147**, 107701 (2022).

- K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. R. Tominaga, J. Phys. Chem. Solids 68(5–6), 1074 (2007).
- A. A. Burtsev, N. N. Eliseev, V. A. Mikhalevsky, A. V. Kiselev, V. V. Ionin, V. V. Grebenev, D. N. Ka-

rimov, and A. A. Lotin, Materials Science in Semiconductor Processing **150**, 106907 (2022).

- K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, Nat. Mater. 7(8), 653 (2008).
- W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, Nat. Rev. Mater. 4(3), 150 (2019).