Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 93-112
   Volumes 113-120
      Volume 120
      Volume 119
      Volume 118
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
Search
VOLUME 120 (2024) | ISSUE 7 | PAGE 547
Coulomb correlations and the electronic structure of bulk V2Te2O
Abstract
The effect of Coulomb correlations on the electronic structure of bulk van der Waals material V2Te2O is studied by the charge self-consistent density functional theory and dynamical mean-field theory method. Our results show a significant correlation-induced renormalization of the spectral functions in the vicinity of the Fermi energy which is not accompanied by a transfer of the spectral weight to Hubbard bands. The computed quasiparticle effective mass enhancement m*/m for the V 3d states varies from 1.31 to 3.32 indicating an orbital-dependent nature of correlation effects and suggests an orbital-selective formation of local moments in the V 3d shell. We demonstrate that taking into account of Coulomb interaction between the V 3d electrons yields the electronic specific heat coefficient γ = 26.94 mJ K-2 mol-1 in reasonable agreement with the experiment. We show that the strength of Coulomb correlations is sufficient to trigger a band shift along the Z-Γ-X path of the Brillouin zone leading to a collapse of the electronic Fermi surface pocket centered on the Γ-Z direction predicted by density functional theory.