Ограничение на относительную вероятность распада $K^+ o \pi^0 \pi^0 \pi^0 e^+ u$

А. В. Артамонов a , В. Н. Бычков c , С. В. Донсков a , А. П. Филин a , С. Н. Филиппов b , А. М. Горин a , Е. Н. Гущин b , А. В. Инякин a , Г. Д. Кекелидзе c , Г. В. Хаустов a , С. А. Холоденко a,d , А. А. Худяков b , В. Н. Колосов a , А. К. Коноплянников a , В. И. Кравцов b , Ю. Г. Куденко b,e,f , А. В. Кулик b1), В. Ф. Куршецов a , В. А. Лишин a , В. М. Лысан c , М. В. Медынский a , В. Ф. Образцов a , А. В. Охотников a , В. А. Поляков a , А. Ю. Поляруш b , В. И. Романовский a , В. И. Рыкалин a , А. С. Садовский a , В. Д. Самойленко a , М. М. Шапкин a , И. С. Тюрин a , В. А. Уваров a , О. П. Ющенко a , Б. Ж. Залиханов c

 a Национальный исследовательский центр "Курчатовский институт" – ИФВЭ, 142281 Протвино, Россия

^bИнститут ядерных исследований – РАН, 117312 Москва, Россия

 c Объединенный институт ядерных исследований, 141980 Дубна, Россия

 d Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 3-56127 Pisa, Italy

 $^e Mocковский физико-технический институт (МФТИ), 141701 Долгопрудный, Москва$

 f Национальный исследовательский ядерный университет (МИФИ), 115409 Москва, Россия

Поступила в редакцию 26 июля 2024 г. После переработки 11 сентября 2024 г. Принята к публикации 11 сентября 2024 г.

Сотрудничеством ОКА предпринят поиск распада $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ на статистике 3.65×10^9 распадов K^+ . Распад не обнаружен. Поставленое ограничение $\mathrm{BR}(K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu) < 5.4 \times 10^{-8} \ 90 \%$ CL в 65 раз лучше приведеного в таблице частиц.

DOI: 10.31857/S0370274X24100145, EDN: SNDTWF

1. Введение. Редкий распад $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ (Ке5) до настоящего времени не наблюдался. Из-за ограниченного фазового объема Киральная Пертурбативная Теория (ChPT) предсказывает очень малую величину относительной вероятности BR(Ke5), 10^{-11} – 10^{-12} [1–3]. С другой стороны, можно ожидать, что ограниченный фазовый объем усиливает роль $\pi\pi$ -рассеяния в конечном состоянии, что может существенно увеличить BR. Например, может образоваться пионный атом, nuoнuй $(A_{2\pi})$, с последующим распадом на $\pi^0\pi^0$: $\pi^+\pi^- \to A_{2\pi} \to \pi^0\pi^0$ [4, 5]. Так как распадная длина пиония $c\tau \sim 10^{-4} \, \mathrm{cm}$ намного превосходит ядерный масштаб, то в этом случае имеет место распад на 4 частицы, $K^+ \to A_{2\pi}\pi^0 e^+ \nu$, а не на 5. Это обстоятельство увеличивает фазовый объем в $\sim 10^6$ раз [2, 3], а последующий распад $A_{2\pi} \to \pi^0 \pi^0$, идущий с вероятностью $\approx 100 \,\%$, приводит к конечному состоянию $\pi^0\pi^0\pi^0e^+\nu$.

Наше исследование проведено с целью существенного улучшения текущего ограничения на вероятность этого распада: ${\rm BR}(K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu) < 3.5 \times 10^{-6}$ [6]. Ограничение получено путем нормировки

на события распада $K^+ \to \pi^0 e^+ \nu$ (Ke3), а контроль систематики - путем измерения брэнчинга распада $K^+ \to \pi^0 \pi^0 e^+ \nu$ (Ke4).

2. Данные и процедура обработки. Эксперимент ОКА, расположенный в НИЦ "Курчатовский Институт" – ИФВЭ в Протвино (Россия), посвящен изучению распадов каонов на лету. Обогащенный каонами вторичный пучок получен путем высокочастотной (ВЧ) сепарации по схеме Панофского. Импульс пучка 17.7 ГэВ с содержанием каонов 12.5 % и интенсивностью до 5×10^5 каонов за цикл ускорителя У-70. Установка ОКА имеет два магнитных спектрометра, пучковый и вторичных частиц, а также 11-метровый распадный объем, окруженный охранной системой. Установка содержит также электромагнитные калориметры GAMS и BGD [7, 8], адронный калориметр GDA [9] и систему идентификации мюонов. Два черенковских счетчика служат для выделения K^+ в пучке на фоне p, π^+ , а широкоапертурный 4-канальный поровый черенковский счетчик для выделения вторичных e^{\pm} на фоне μ^{\pm}, π^{\pm} . Более подробно с установкой можно ознакомиться по ссылкам [10, 11]. Для поиска распада $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ использованы данные, записанные в сеансах 2012,

¹⁾e-mail: alex.kulik@gmail.com

Рис. 1. (Цветной онлайн) Идентификация электрона и поиск π^0 . (а) – Идентификация электрона. Отношение e/p: данные (светлая гистограмма) и МК $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ (заштрихованная). (b) – Масса $\gamma \gamma$ в распаде $K^+ \to \pi^0 e^+ \nu$ (данные); стрелками показаны жесткие отборы (c) – Масса $\gamma \gamma$ в распаде $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ (МК); стрелками показаны мягкие отборы

2013 и 2018 гг. Для расчета эффективностей регистрации методом Монте-Карло (МК) сгенерированы события распадов Ke3, Ke4 и Ke5 при помощи программы Geant-3.21 [12] с детальным описанием установки. МК событий сгенерировано примерно в 10 раз больше, чем реальных событий, записанных в ходе эксперимента. Для оценки фонов сгенерированы МК события 6-ти наиболее интенсивных распадов заряженного каона ($\mu^+\nu$, $\pi^+\pi^0$, $\pi^0e^+\nu$, $\pi^0\mu^+\nu$, $\pi^+\pi^0\pi^0$, $\pi^+\pi^+\pi^-$) в количествах, пропорциональных вероятностям этих распадов. События МК обработаны так же, как и данные, включая реконструкцию. Каждому МК событию приписан вес $w \sim |M|^2$, где M — матричный элемент распада.

3. Отбор событий Ke3, Ke4, Ke5. Отбираются события с единственным вторичным треком, идентифицированным как e^+ и с 1, 2 или 3 π^0 -мезонами. Для этого требуется, чтобы положительному треку соответствовал ливень в GAMS с отношением e/p в пределах $\pm 3\sigma$ от номинального значения (рис. 1а). Из всех возможных комбинаций γ -квантов выбирается комбинация с наибольшим числом пар (π^0 -мезонов), удовлетворяющих условию

$$\sum_{i} (m_{\gamma\gamma} - m_{\pi^0})_i^2 < R_{\pi}^2.$$
 (1)

Значение параметра R_π будет конкретизировано ниже.

Эта общая процедура применена к трем распадам с некоторыми вариациями. Большая статистика в $K^+ \to \pi^0 e^+ \nu$ и $K^+ \to \pi^0 \pi^0 e^+ \nu$ позволяет ужесточить отборы для большего подавления фонов. Прямо противоположная ситуация возникла с распадом $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$: ни событий, ни фона не видно даже при более мягких отборах, что позволяет увеличить эффективность и повысить устойчивость к

возможным неточностям МК моделирования. Поэтому мы используем 2 набора критериев: "жесткие" — для $K^+ \to \pi^0\pi^0e^+\nu$ и "мягкие" — для поиска редкого распада $K^+ \to \pi^0\pi^0\pi^0e^+\nu$. Такой парадоксальный выбор обусловлен отсутствием фона для $K^+ \to \pi^0\pi^0\pi^0e^+\nu$. Распад $K^+ \to \pi^0e^+\nu$ регистрируется как с мягкими, так и с жесткими отборами для нормировки $K^+ \to \pi^0\pi^0\pi^0e^+\nu$ и $K^+ \to \pi^0\pi^0e^+\nu$ сответственно. Ниже перечислены различия между мягкими и жесткими отборами.

- Идентификация электрона. Жесткие отборы основаны исключительно на GAMS: проекция трека в GAMS должна попадать в один из ливней, как было указано выше. В мягких отборах принимаются треки без соответствующего ливня в GAMS, если широкоапетрурный черенковский счетчик подтверждает электрон. Это послабление заметно поднимает эффективность, так как в распаде $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ с мягким спектром e^+ треки часто не попадают в GAMS.
- Поиск π^0 . Параметр R_{π} в (1) $R_{\pi} = 0.02$ ГэВ в жестких отборах и $R_{\pi} = 0.03$ ГэВ в мягких (рис. 1b, c).
- Жесткие отборы требуют 2 или 4 γ с $E_{\gamma} > 0.5 \, \Gamma$ эВ для поиска π^0 согласно (1). Мягкие отборы ищут π^0 в событиях с $n_{\gamma} \geq 6$, $E_{\gamma} > 0.3 \, \Gamma$ эВ и иногда находят $3\pi^0$ в событиях с 7γ или 8γ .
- Жесткие отборы бракуют события с ливнями в адронном калориметре GDA и требуют ровно 2 сегмента e⁺ трека: один – до анализирующего магнита и один – после. Мягкие отборы допускают ливни в GDA и лишние сегменты трека.

Рис. 2. (Цветной онлайн) Наблюдение распада $K^+ \to \pi^0 e^+ \nu$. (а) – Баланс энергии, отбор $\Delta E < -1$ ГэВ введен для подавления фона $\pi^+ \pi^0$. (b) – Недостающая масса, данные и МК

Рис. 3. (Цветной онлайн) Наблюдение распада $K^+ \to \pi^0 \pi^0 e^+ \nu$. (а) — Баланс энергии в событии: сигнал (синяя гистограмма) и фон (светлая). (b) — Фит модельного (МК) спектра недостающей массы двумя функциями Гаусса. (c) — Фит реального спектра недостающей массы формой МК с рис. 3b + полином 2 степени

4. Наблюдение распадов. При окончательном отборе событий введены дополнительные критерии, специфические для каждого распада.

 $4.1.~K^+ \to \pi^0 e^+ \nu$. Баланс энергии в событии определен как $\Delta E = E_{\rm det} - E_b$, где $E_{\rm det}$ — сумма энергий зарегистрированных частиц (e^+,π^0) , а E_b — энергия K^+ пучка. Мы ожидаем, что распады с ν будут обнаруживать дефицит баланса $\Delta E < 0$, так как ν не регистрируется. Потребовав дополнительно к мягким отборам $\Delta E < -1$ ГэВ (рис. 2a) для подавления фона $\pi^+\pi^0$, мы видим чистый пик в недостающей массе, содержащий $\sim 8.4 \times 10^6$ событий (рис. 2b). Фон в этой выборке оценивается МК на уровне $\sim 1\%$.

4.2. $K^+ \to \pi^0 \pi^0 e^+ \nu$. Для подавления доминирующего фона $K^+ \to \pi^+ \pi^0 \pi^0$ введены отборы по балансу энергии $\Delta E < -2$ ГэВ (рис. 3а) и поперечному импульсу $P_T < 0.12$ ГэВ. Отбор по недостающей энергии $E^*_{\rm miss}$ в системе покоя K^+ также подавляет фоны. Порог $E^*_{\rm miss} > 0$ выбран потому, что в распадах с участием ν при хорошей точности измерения $E^*_{\rm miss} \approx E^*_{\nu} > 0$. МК моделирование показывает, что события с отрицательными $E^*_{\rm miss}$ возникают преиму-

щественно из-за ошибочной идентификации пары $\gamma\gamma$ как π^0 ; некоторый вклад дает также конечное разрешение. Пик в недостающей массе ясно виден на рис. 3с. Мы фитируем этот спектр формой, полученной фитом соответствующего спектра МК на рис. 3b + полином 2 степени для описания фона. Интеграл МК формы дает 896 ± 51 событий распада.

 $4.3.~K^+ o \pi^0 \pi^0 \pi^0 e^+ \nu$. Вычислены недостающая энергия $E^*_{\rm miss}$ и недостающий импульс $p^*_{\rm miss}$ в системе покоя K^+ ; они не всегда совпадают друг с другом, так как оставлена свободной недостающая масса. Большинство кандидатов не удовлетворяют естественному требованию $E^*_{\rm miss} > 0$ (рис. 4). Несколько оставшихся кандидатов забракованы требованием $|p_{\rm miss}| < 0.08\,\Gamma$ эВ, обусловленным кинематикой распада: импульс ν не превышает $p^*_{\nu} < \frac{M_K^2 - (3m_\pi)^2}{2M_K} \approx 0.08\,\Gamma$ эВ. Как видно из рис. 4, кандидаты ни в коей мере не соответствуют МК моделированию.

5. Относительные вероятности. Эффективности регистрации вычислены как отношение числа прошедших отборы МК событий к полному числу сгенерированных событий. Полученная таким об-

Рис. 4. (Цветной онлайн) Поиск распада $K^+ \to \pi^0\pi^0\pi^0e^+\nu$: модуль недостающего импульса и недостающая энергия в системе покоя K^+ , данные (красные точки), МК фон (синие звездочки) и МК сигнал (мелкие точки). Ни одно событие не проходит отборов, показанных прямоугольником

разом эффективность регистрации распада \mathbf{x} , $\epsilon(x)$, число зарегистрированных в эксперименте событий n_x и табличное значение $\mathrm{BR}(K^+ \to \pi^0 e^+ \nu) = (5.07 \pm \pm 0.04)\,\%$ использованы для получения относительных вероятностей:

$$BR(x) = \frac{n_x}{n_{\pi^0 e^+ \nu}} \times \frac{\epsilon_{\pi^0 e^+ \nu}}{\epsilon_x} \times BR(\pi^0 e^+ \nu), \quad (2)$$

 $x=\pi^0\pi^0e^+
u, \quad \pi^0\pi^0\pi^0e^+
u, \quad n_{\pi^0\pi^0\pi^0e^+
u}<2.3$ для 90 %CL.

Матричные элементы распадов вычислены в рамках Стандартной Модели:

$$M \sim (\bar{e}\gamma_{\alpha}(1+\gamma_{5})\nu)H_{\alpha}.$$
 (3)

Лоренц-инвариантность, Бозе-статистика и малость массы электрона ограничивают адронный ток H_{α} следующими формами:

$$H_{\alpha}=f_{1}p_{\alpha}$$
 для $K^{+}\to\pi^{0}e^{+}\nu,$ $H_{\alpha}=f_{1}(p_{1}+p_{2})_{\alpha}$ для $K^{+}\to\pi^{0}\pi^{0}e^{+}\nu,$ $H_{\alpha}=f_{1}(p_{1}+p_{2}+p_{3})_{\alpha}+f_{4}q_{\alpha},$ $q=rac{\{(p_{1}\cdot p_{2})p_{3}\}_{123}}{m_{\pi}^{2}}$ для $K^{+}\to\pi^{0}\pi^{0}\pi^{0}e^{+}\nu.$ (4)

Здесь p_i – импульсы пионов, а $\{\}$ – симметризация по трем π^0 . $f_{1,4}(m_{e\nu},m_h)$ – форм-факторы, в общем случае зависящие от масс лептонной и адронной систем: $m_{e\nu}^2 = (k_e + k_\nu)^2, m_h^2 = \left(\sum_i p_i\right)^2$. Мы взяли феноменологическую параметризацию для f_1 из [13]; она мало влияет на эффективность. Мы не располагаем информацией по f_4 , однако МК моделирование показывает небольшое влияние f_4 на эффективность регистрации (до 9 %, рис. 5). Мы приводим результат для наихудшего случая $f_4 = -3f_1$. Относительные вероятности приведены в табл. 1.

Рис. 5. Средний вес $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ событий, прошедших все отборы в зависимости от f_4/f_1 , светлые кружочки – $f_4 < 0$

6. Систематические оппибки. Наибольшая неопределенность, до 9%, возникает изза неизвестного отношения f_4/f_1 . Мы приводим верхний предел в самом пессимистическом предположении $f_4=-3f_1$, он понизится до $\mathrm{BR}(K^+\to\pi^0\pi^0\pi^0e^+\nu)<5\times10^{-8}$ 90%CL, если $f_4\ll f_1$ (рис. 5). Отсутствие фона для распада $K^+\to\pi^0\pi^0\pi^0e^+\nu$ позволило применить предельно мягкие отборы, сделав расчет эффективности малочувствительным к возможным неточностям МК модели.

Согласие полученного $\mathrm{BR}(K^+ \to \pi^0 \pi^0 e^+ \nu)$ с мировым средним доказывает, что оппибки в расчете эффективностей $\epsilon_{\pi^0 e^+ \nu}, \epsilon_{\pi^0 \pi^0 e^+ \nu}$ не превышают оппибки в измерении $\mathrm{BR}(K^+ \to \pi^0 \pi^0 e^+ \nu)$ 51/896 \approx 6%. Влияние такой неопределенности на верхний предел BR ничтожно. Если мы хотим поставить ограничение на некоторую величину B, связанную с наблюдаемым числом событий n соотношением $n=\epsilon B$ и ϵ известна с оппибкой $\pm \sigma_{\epsilon}$ [14], то при нормальном распределении ϵ вероятность выпадания n=0 дается сверткой:

$$P_0 = \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \int \exp\left[-(\epsilon + x)B - \frac{x^2}{2\sigma_{\epsilon}^2}\right] dx.$$

В результате интегрирования получаем

$$P_0 = e^{-A}, \quad A = \epsilon B \left[1 - \left(\frac{\sigma_{\epsilon}}{\epsilon} \right)^2 \times \frac{\epsilon B}{2} \right].$$

Для 90 % CL $P_0=0.1,~A\approx 2.3.$ Отсюда имеем $\epsilon B\approx 2.3\left[1+1.15\left(\frac{\sigma_\epsilon}{\epsilon}\right)^2\right]\left(\frac{\sigma_\epsilon}{\epsilon}\ll 1\right).$

Таким образом, поправка к верхнему пределу лишь квадратична по $(\sigma_{\epsilon}/\epsilon)$, т.е. пренебрежимо мала при любой разумной оценке ϵ .

7. Заключение. В рамках сотрудничества ОКА изучались 3 распада: $K^+ \to \pi^0 e^+ \nu$, $K^+ \to \pi^0 \pi^0 e^+ \nu$

Распад	Число событий	Эффективность	BR, настоящая работа	BR, PDG
$K^+ \to \pi^0 e^+ \nu$	8.4×10^{6}	1.08×10^{-2}	Нормировка	$(5.07 \pm 0.04) \%$
Жесткие отборы				
$K^+ \to \pi^0 \pi^0 e^+ \nu$	896 ± 51	2.3×10^{-3}	$(2.54 \pm 0.14) \times 10^{-5}$	$(2.55 \pm 0.04) \times 10^{-5}$
$K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$	0	1.89×10^{-3}	$< 5.4 \times 10^{-8} 90 \% CL$	$< 3.5 \times 10^{-6} 90 \% CL$

Таблица 1. Вычисление вероятностей распадов

и $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$, первый из которых использован для абсолютной нормировки результатов. Полученная величина $BR(K^+ \to \pi^0 \pi^0 e^+ \nu) = (2.54 \pm 0.14) \times$ $\times 10^{-5}$ согласуется с мировым средним в пределах статистических ошибок. Распад $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ не обнаружен. Установлен верхний предел $BR(K^+ \rightarrow$ $\rightarrow \pi^0 \pi^0 \pi^0 e^+ \nu$) $< 5.4 \times 10^{-8} 90 \%$ CL – в 65 раз ниже опубликованного в настоящее время. Из-за неопределенности в матричном элементе верхний предел приведен в наихудшем предположении, он может быть еще на $9\,\%$ ниже. Важный результат настоящей работы – отсутствие фона к этому распаду, что позволяет улучшать ограничение линейно (а не как квадратный корень) с объемом доступного статистического материала. Это обстоятельство открывает большие возможности для будущих экспериментов с высокой статистикой.

Мы благодарим наших коллег из ускорительного отдела за хорошую работу У-70 во время набора данных; коллег из отдела пучков — за устойчивую работу канала 21К, включая работу ВЧдефлекторов, и коллег из инженерно-физического отдела — за бесперебойную работу криогенной системы ВЧ-дефлекторов.

Финансирование работы. Работа выполнена в Институте физики высоких энергий им. А. А. Логунова Национального исследовательского центра "Курчатовский институт" при финансовой поддержке Российского научного фонда (грант # 22-12-0051).

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- 1. В. С. Демидов, Е. П. Шебалин, Препринт ИТЭФ-31 (1991).
- J. Bijnens, G. Colangelo, G. Ecker, and J. Gasser, arXiv:hep-ph/9411311v1 16Nov 1994.
- 3. S. Blaser, Phys. Lett. B 345, 287 (1995).
- 4. J. Uretsky and J. Palfrey, Phys. Rev. 121, 1798 (1961).
- 5. B. Adeva, L. Afanasyev, M. Benayoun et al. (Collaboration), Phys. Lett. B **704**, 24 (2011).
- 6. В. Н. Болотов, С. Н. Гниненко, Р. М. Джилкибаев, В. В. Исаков, Ю. М. Клубаков, В. Д. Лаптев, В. М. Лобашев, В. Н. Марин, А. А. Поблагуев, В. Е. Постоев, А. Н. Торопив, Письма в ЖЭТФ 47, 8 (1988).
- B. Powell, R. Heller, N. Ibold et al. (Collaboration), Nucl. Instrum. Meth. 198, 217 (1982).
- 8. F.G. Binon, V.M. Buyanov, S.V. Donskov et al. (Collaboration), Nucl. Instrum. Meth. A 248, 86 (1986).
- 9. Ф. Бинон, К. Брикман, В.М. Буянов и др. (Collaboration), Препринт ИФВЭ-86-109 (1986).
- 10. V. F. Kurshetsov, PoS KAON09 **051** (2009).
- A. S. Sadovsky, V. F. Kurshetsov, A. P. Filin et al. (Collaboration), Eur. Phys. J. C 78, 92 (2018).
- R. Brun, F. Bruyant, F. Carminati, S. Giani,
 M. Maire, A. McPherson, G. Patrick, and
 L. Urban, CERN Program Library; W5013 (1993);
 DOI:10.17181/CERN.MUH (1993).
- J. R. Batley, G. Kalmus, C. Lazzeroni et al. (Collaboration), JHEP 08, 159 (2014); ArXiv ePrint: 1406.4749.
- 14. B. Roger, arXiv:hep-ex/0207026v1 6 Jul 2002.