## Ограничение на относительную вероятность распада $K^+ o \pi^0 \pi^0 \pi^0 e^+ u$

А. В. Артамонов<sup>а</sup>, В. Н. Бычков<sup>с</sup>, С. В. Донсков<sup>а</sup>, А. П. Филин<sup>а</sup>, С. Н. Филиппов<sup>b</sup>, А. М. Горин<sup>a</sup>, Е. Н. Гущин<sup>b</sup>, А. В. Инякин<sup>a</sup>, Г. Д. Кекелидзе<sup>c</sup>, Г. В. Хаустов<sup>a</sup>, С. А. Холоденко<sup>a,d</sup>, А. А. Худяков<sup>b</sup>, В. Н. Колосов<sup>a</sup>,

А. К. Коноплянников<sup>*a*</sup>, В. И. Кравцов<sup>*b*</sup>, Ю. Г. Куденко<sup>*b*,*e*,*f*</sup>, А. В. Кулик<sup>*b*1</sup>, В. Ф. Куршецов<sup>*a*</sup>, В. А. Лишин<sup>*a*</sup>,

В. М. Лысан<sup>c</sup>, М. В. Медынский<sup>a</sup>, В. Ф. Образцов<sup>a</sup>, А. В. Охотников<sup>a</sup>, В. А. Поляков<sup>a</sup>, А. Ю. Поляруш<sup>b</sup>,

D. M. Distean, M. D. McGishekawa, D. & Oopasidos, M. D. Akolinakos, D. A. Holakos, A. 10. Holakpyin,

В. И. Романовский<sup>а</sup>, В. И. Рыкалин<sup>а</sup>, А. С. Садовский<sup>а</sup>, В. Д. Самойленко<sup>а</sup>, М. М. Шапкин<sup>а</sup>, И. С. Тюрин<sup>а</sup>,

В. А. Уваров<sup>а</sup>, О. П. Ющенко<sup>а</sup>, Б. Ж. Залиханов<sup>с</sup>

<sup>а</sup> Национальный исследовательский центр "Курчатовский институт" – ИФВЭ, 142281 Протвино, Россия

<sup>b</sup>Институт ядерных исследований – РАН, 117312 Москва, Россия

<sup>с</sup>Объединенный институт ядерных исследований, 141980 Дубна, Россия

<sup>d</sup>Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, 3-56127 Pisa, Italy

<sup>е</sup>Московский физико-технический институт (МФТИ), 141701 Долгопрудный, Москва

<sup>f</sup> Национальный исследовательский ядерный университет (МИФИ), 115409 Москва, Россия

Поступила в редакцию 26 июля 2024 г. После переработки 11 сентября 2024 г. Принята к публикации 11 сентября 2024 г.

Сотрудничеством ОКА предпринят поиск распада  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  на статистике  $3.65 \times 10^9$  распадов  $K^+$ . Распад не обнаружен. Поставленое ограничение  $BR(K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu) < 5.4 \times 10^{-8}$  90 % CL в 65 раз лучше приведеного в таблице частиц.

DOI: 10.31857/S0370274X24100145, EDN: SNDTWF

1. Введение. Редкий распад  $K^+ \rightarrow \pi^0 \pi^0 \pi^0 e^+ \nu$ (Ке5) до настоящего времени не наблюдался. Из-за ограниченного фазового объема Киральная Пертурбативная Теория (ChPT) предсказывает очень малую величину относительной вероятности BR(Ke5),  $10^{-11}-10^{-12}$  [1–3]. С другой стороны, можно ожидать, что ограниченный фазовый объем усиливает роль  $\pi\pi$ -рассеяния в конечном состоянии, что может существенно увеличить BR. Например, может образоваться пионный атом, *пионий*  $(A_{2\pi})$ , с последующим распадом на  $\pi^0 \pi^0$ :  $\pi^+ \pi^- \to A_{2\pi} \to \pi^0 \pi^0[4, 5]$ . Так как распадная длина пиония  $c\tau \sim 10^{-4}$  см намного превосходит ядерный масштаб, то в этом случае имеет место распад на 4 частицы,  $K^+ \to A_{2\pi} \pi^0 e^+ \nu$ , а не на 5. Это обстоятельство увеличивает фазовый объем в  $\sim 10^6$  раз [2, 3], а последующий распад  $A_{2\pi} \to \pi^0 \pi^0$ , идущий с вероятностью  $\approx 100$  %, приводит к конечному состоянию  $\pi^0 \pi^0 \pi^0 e^+ \nu$ .

Наше исследование проведено с целью существенного улучшения текущего ограничения на вероятность этого распада:  $BR(K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu) < 3.5 \times 10^{-6}$  [6]. Ограничение получено путем нормировки

2. Данные и процедура обработки. Эксперимент ОКА, расположенный в НИЦ "Курчатовский Институт" – ИФВЭ в Протвино (Россия), посвящен изучению распадов каонов на лету. Обогащенный каонами вторичный пучок получен путем высокочастотной (ВЧ) сепарации по схеме Панофского. Импульс пучка 17.7 ГэВ с содержанием каонов 12.5 % и интенсивностью до  $5 \times 10^5$  каонов за цикл ускорителя У-70. Установка ОКА имеет два магнитных спектрометра, пучковый и вторичных частиц, а также 11-метровый распадный объем, окруженный охранной системой. Установка содержит также электромагнитные калориметры GAMS и BGD [7, 8], адронный калориметр GDA [9] и систему идентификации мюонов. Два черенковских счетчика служат для выделения  $K^+$  в пучке на фоне  $p, \pi^+$ , а широкоапертурный 4-канальный поровый черенковский счетчик – для выделения вторичных  $e^{\pm}$  на фоне  $\mu^{\pm}, \pi^{\pm}$ . Более подробно с установкой можно ознакомиться по ссылкам [10, 11]. Для поиска распада  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ использованы данные, записанные в сеансах 2012,

на события распада  $K^+ \to \pi^0 e^+ \nu$  (Ke3), а контроль систематики - путем измерения брэнчинга распада  $K^+ \to \pi^0 \pi^0 e^+ \nu$  (Ke4).

 $<sup>^{1)}{\</sup>rm e\text{-mail: alex.kulik@gmail.com}}$ 



Рис. 1. (Цветной онлайн) Идентификация электрона и поиск  $\pi^0$ . (a) – Идентификация электрона. Отношение e/p: данные (светлая гистограмма) и МК  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  (заштрихованная). (b) – Масса  $\gamma \gamma$  в распаде  $K^+ \to \pi^0 e^+ \nu$  (данные); стрелками показаны жесткие отборы (c) – Масса  $\gamma \gamma$  в распаде  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  (МК); стрелками показаны мягкие отборы

2013 и 2018 гг. Для расчета эффективностей регистрации методом Монте-Карло (МК) сгенерированы события распадов Ке3, Ке4 и Ке5 при помощи программы Geant-3.21 [12] с детальным описанием установки. МК событий сгенерировано примерно в 10 раз больше, чем реальных событий, записанных в ходе эксперимента. Для оценки фонов сгенерированы МК события 6-ти наиболее интенсивных распадов заряженного каона ( $\mu^+\nu$ ,  $\pi^+\pi^0$ ,  $\pi^0 e^+\nu$ ,  $\pi^0\mu^+\nu$ ,  $\pi^+\pi^0\pi^0$ ,  $\pi^+\pi^+\pi^-$ ) в количествах, пропорциональных вероятностям этих распадов. События МК обработаны так же, как и данные, включая реконструкцию. Каждому МК событию приписан вес  $w \sim |M|^2$ , где M – матричный элемент распада.

3. Отбор событий Ке3, Ке4, Ке5. Отбираются события с единственным вторичным треком, идентифицированным как  $e^+$  и с 1, 2 или 3  $\pi^0$ -мезонами. Для этого требуется, чтобы положительному треку соответствовал ливень в GAMS с отношением e/p в пределах  $\pm 3\sigma$  от номинального значения (рис. 1а). Из всех возможных комбинаций  $\gamma$ -квантов выбирается комбинация с наибольшим числом пар ( $\pi^0$ -мезонов), удовлетворяющих условию

$$\sum_{i} (m_{\gamma\gamma} - m_{\pi^0})_i^2 < R_{\pi}^2.$$
 (1)

Значение параметра  $R_\pi$  будет конкретизировано ниже.

Эта общая процедура применена к трем распадам с некоторыми вариациями. Большая статистика в  $K^+ \to \pi^0 e^+ \nu$  и  $K^+ \to \pi^0 \pi^0 e^+ \nu$  позволяет ужесточить отборы для большего подавления фонов. Прямо противоположная ситуация возникла с распадом  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ : ни событий, ни фона не видно даже при более мягких отборах, что позволяет увеличить эффективность и повысить устойчивость к возможным неточностям МК моделирования. Поэтому мы используем 2 набора критериев: "жесткие" – для  $K^+ \to \pi^0 \pi^0 e^+ \nu$  и "мягкие" – для поиска редкого распада  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ . Такой парадоксальный выбор обусловлен отсутствием фона для  $K^+ \to$  $\to \pi^0 \pi^0 \pi^0 e^+ \nu$ . Распад  $K^+ \to \pi^0 e^+ \nu$  регистрируется как с мягкими, так и с жесткими отборами для нормировки  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  и  $K^+ \to \pi^0 \pi^0 e^+ \nu$  сответственно. Ниже перечислены различия между мягкими и жесткими отборами.

- Идентификация электрона. Жесткие отборы основаны исключительно на GAMS: проекция трека в GAMS должна попадать в один из ливней, как было указано выше. В мягких отборах принимаются треки без соответствующего ливня в GAMS, если широкоапетрурный черенковский счетчик подтверждает электрон. Это послабление заметно поднимает эффективность, так как в распаде  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  с мягким спектром  $e^+$  треки часто не попадают в GAMS.
- Поиск  $\pi^0$ . Параметр  $R_{\pi}$  в (1)  $R_{\pi} = 0.02$  ГэВ в жестких отборах и  $R_{\pi} = 0.03$  ГэВ в мягких (рис. 1b, c).
- Жесткие отборы требуют 2 или 4  $\gamma$  с  $E_{\gamma} > 0.5 \Gamma$ эВ для поиска  $\pi^0$  согласно (1). Мягкие отборы ищут  $\pi^0$  в событиях с  $n_{\gamma} \ge 6$ ,  $E_{\gamma} > 0.3 \Gamma$ эВ и иногда находят  $3\pi^0$  в событиях с  $7\gamma$  или  $8\gamma$ .
- Жесткие отборы бракуют события с ливнями в адронном калориметре GDA и требуют ровно 2 сегмента e<sup>+</sup> трека: один – до анализирующего магнита и один – после. Мягкие отборы допускают ливни в GDA и лишние сегменты трека.



Рис. 2. (Цветной онлайн) Наблюдение распада  $K^+ \to \pi^0 e^+ \nu$ . (а) – Баланс энергии, отбор  $\Delta E < -1 \Gamma$ эВ введен для подавления фона  $\pi^+ \pi^0$ . (b) – Недостающая масса, данные и МК



Рис. 3. (Цветной онлайн) Наблюдение распада  $K^+ \to \pi^0 \pi^0 e^+ \nu$ . (а) – Баланс энергии в событии: сигнал (синяя гистограмма) и фон (светлая). (b) – Фит модельного (МК) спектра недостающей массы двумя функциями Гаусса. (с) – Фит реального спектра недостающей массы формой МК с рис. 3b + полином 2 степени

**4. Наблюдение распадов.** При окончательном отборе событий введены дополнительные критерии, специфические для каждого распада.

4.1.  $K^+ \to \pi^0 e^+ \nu$ . Баланс энергии в событии определен как  $\Delta E = E_{det} - E_b$ , где  $E_{det}$  – сумма энергий зарегистрированных частиц  $(e^+, \pi^0)$ , а  $E_b$  – энергия  $K^+$  пучка. Мы ожидаем, что распады с  $\nu$ будут обнаруживать дефицит баланса  $\Delta E < 0$ , так как  $\nu$  не регистрируется. Потребовав дополнительно к мягким отборам  $\Delta E < -1$  ГэВ (рис. 2а) для подавления фона  $\pi^+\pi^0$ , мы видим чистый пик в недостающей массе, содержащий ~  $8.4 \times 10^6$  событий (рис. 2b). Фон в этой выборке оценивается МК на уровне ~ 1%.

4.2.  $K^+ \to \pi^0 \pi^0 e^+ \nu$ . Для подавления доминирующего фона  $K^+ \to \pi^+ \pi^0 \pi^0$  введены отборы по балансу энергии  $\Delta E < -2$  ГэВ (рис. За) и поперечному импульсу  $P_T < 0.12$  ГэВ. Отбор по недостающей энергии  $E^*_{\rm miss}$  в системе покоя  $K^+$  также подавляет фоны. Порог  $E^*_{\rm miss} > 0$  выбран потому, что в распадах с участием  $\nu$  при хорошей точности измерения  $E^*_{\rm miss} \approx E^*_{\nu} > 0$ . МК моделирование показывает, что события с отрицательными  $E^*_{\rm miss}$  возникают преиму-

щественно из-за ошибочной идентификации пары  $\gamma\gamma$ как  $\pi^0$ ; некоторый вклад дает также конечное разрешение. Пик в недостающей массе ясно виден на рис. 3с. Мы фитируем этот спектр формой, полученной фитом соответствующего спектра МК на рис. 3b + полином 2 степени для описания фона. Интеграл МК формы дает 896 ± 51 событий распада.

4.3.  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ . Вычислены недостающая энергия  $E^*_{\rm miss}$  и недостающий импульс  $p^*_{\rm miss}$  в системе покоя  $K^+$ ; они не всегда совпадают друг с другом, так как оставлена свободной недостающая масса. Большинство кандидатов не удовлетворяют естественному требованию  $E^*_{\rm miss} > 0$  (рис. 4). Несколько оставшихся кандидатов забракованы требованием  $|p_{\rm miss}| < 0.08 \, \Gamma$ эВ, обусловленным кинематикой распада: импульс  $\nu$  не превышает  $p^*_{\nu} < \frac{M^2_K - (3m_\pi)^2}{2M_K} \approx 0.08 \, \Gamma$ эВ. Как видно из рис. 4, кандидаты ни в коей мере не соответствуют МК моделированию.

5. Относительные вероятности. Эффективности регистрации вычислены как отношение числа прошедших отборы МК событий к полному числу сгенерированных событий. Полученная таким об-



Рис. 4. (Цветной онлайн) Поиск распада  $K^+ \rightarrow \pi^0 \pi^0 \pi^0 e^+ \nu$ : модуль недостающего импульса и недостающая энергия в системе покоя  $K^+$ , данные (красные точки), МК фон (синие звездочки) и МК сигнал (мелкие точки). Ни одно событие не проходит отборов, показанных прямоугольником

разом эффективность регистрации распада **x**,  $\epsilon(x)$ , число зарегистрированных в эксперименте событий  $n_x$  и табличное значение BR $(K^+ \to \pi^0 e^+ \nu) = (5.07 \pm \pm 0.04)$ % использованы для получения относительных вероятностей:

$$BR(x) = \frac{n_x}{n_{\pi^0 e^+ \nu}} \times \frac{\epsilon_{\pi^0 e^+ \nu}}{\epsilon_x} \times BR(\pi^0 e^+ \nu), \qquad (2)$$

 $x = \pi^0 \pi^0 e^+ \nu$ ,  $\pi^0 \pi^0 \pi^0 e^+ \nu$ ,  $n_{\pi^0 \pi^0 e^+ \nu} < 2.3$ для 90 %CL.

Матричные элементы распадов вычислены в рамках Стандартной Модели:

$$M \sim (\bar{e}\gamma_{\alpha}(1+\gamma_5)\nu)H_{\alpha}.$$
 (3)

Лоренц-инвариантность, Бозе-статистика и малость массы электрона ограничивают адронный ток  $H_{\alpha}$  следующими формами:

$$H_{\alpha} = f_{1}p_{\alpha} \quad \text{для} \quad K^{+} \to \pi^{0}e^{+}\nu,$$

$$H_{\alpha} = f_{1}(p_{1} + p_{2})_{\alpha} \quad \text{для} \quad K^{+} \to \pi^{0}\pi^{0}e^{+}\nu,$$

$$H_{\alpha} = f_{1}(p_{1} + p_{2} + p_{3})_{\alpha} + f_{4}q_{\alpha},$$

$$q = \frac{\{(p_{1} \cdot p_{2})p_{3}\}_{123}}{m_{\pi}^{2}} \quad \text{для} \quad K^{+} \to \pi^{0}\pi^{0}\pi^{0}e^{+}\nu. \quad (4)$$

Здесь  $p_i$  – импульсы пионов, а {} – симметризация по трем  $\pi^0$ .  $f_{1,4}(m_{e\nu}, m_h)$  – форм-факторы, в общем случае зависящие от масс лептонной и адронной систем:  $m_{e\nu}^2 = (k_e + k_{\nu})^2$ ,  $m_h^2 = (\sum_i p_i)^2$ . Мы взяли феноменологическую параметризацию для  $f_1$  из [13]; она мало влияет на эффективность. Мы не располагаем информацией по  $f_4$ , однако МК моделирование показывает небольшое влияние  $f_4$  на эффективность регистрации (до 9%, рис. 5). Мы приводим результат для наихудшего случая  $f_4 = -3f_1$ . Относительные вероятности приведены в табл. 1.



Рис. 5. Средний вес  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  событий, пропедших все отборы в зависимости от  $f_4/f_1$ , светлые кружочки –  $f_4 < 0$ 

6. Систематические ошибки. Наибольшая неопределенность, до 9%, возникает изза неизвестного отношения  $f_4/f_1$ . Мы приводим верхний предел в самом пессимистическом предположении  $f_4 = -3f_1$ , он понизится до  $BR(K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu) < 5 \times 10^{-8}$  90%СL, если  $f_4 \ll f_1$  (рис. 5). Отсутствие фона для распада  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  позволило применить предельно мягкие отборы, сделав расчет эффективности малочувствительным к возможным неточностям МК модели.

Согласие полученного  $BR(K^+ \to \pi^0 \pi^0 e^+ \nu)$  с мировым средним доказывает, что ошибки в расчете эффективностей  $\epsilon_{\pi^0 e^+ \nu}, \epsilon_{\pi^0 \pi^0 e^+ \nu}$  не превышают ошибки в измерении  $BR(K^+ \to \pi^0 \pi^0 e^+ \nu)$  51/896  $\approx 6\%$ . Влияние такой неопределенности на верхний предел BR ничтожно. Если мы хотим поставить ограничение на некоторую величину *B*, связанную с наблюдаемым числом событий *n* соотношением  $n = \epsilon B$  и  $\epsilon$  известна с ошибкой  $\pm \sigma_{\epsilon}$  [14], то при нормальном распределении  $\epsilon$  вероятность выпадания n = 0 дается сверткой:

$$P_0 = \frac{1}{\sqrt{2\pi\sigma_{\epsilon}}} \int \exp\left[-(\epsilon + x)B - \frac{x^2}{2\sigma_{\epsilon}^2}\right] dx.$$

В результате интегрирования получаем

$$P_0 = e^{-A}, \quad A = \epsilon B \left[ 1 - \left(\frac{\sigma_\epsilon}{\epsilon}\right)^2 \times \frac{\epsilon B}{2} \right]$$

Для 90% CL  $P_0 = 0.1$ ,  $A \approx 2.3$ . Отсюда имеем  $\epsilon B \approx 2.3 \left[ 1 + 1.15 \left( \frac{\sigma_\epsilon}{\epsilon} \right)^2 \right] \left( \frac{\sigma_\epsilon}{\epsilon} \ll 1 \right)$ . Таким образом, поправка к верхнему пределу

Таким образом, поправка к верхнему пределу лишь квадратична по  $(\sigma_{\epsilon}/\epsilon)$ , т.е. пренебрежимо мала при любой разумной оценке  $\epsilon$ .

7. Заключение. В рамках сотрудничества ОКА изучались 3 распада:  $K^+ \to \pi^0 e^+ \nu, \ K^+ \to \pi^0 \pi^0 e^+ \nu$ 

| Распад                              | Число событий    | Эффективность         | BR, настоящая работа                   | BR, PDG                                |
|-------------------------------------|------------------|-----------------------|----------------------------------------|----------------------------------------|
| $K^+ \to \pi^0 e^+ \nu$             | $8.4 	imes 10^6$ | $1.08\times 10^{-2}$  | Нормировка                             | $(5.07 \pm 0.04)\%$                    |
| Жесткие отборы                      |                  |                       |                                        |                                        |
| $K^+ \to \pi^0 \pi^0 e^+ \nu$       | $896\pm51$       | $2.3 	imes 10^{-3}$   | $(2.54 \pm 0.14) \times 10^{-5}$       | $(2.55 \pm 0.04) \times 10^{-5}$       |
| $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ | 0                | $1.89 \times 10^{-3}$ | $< 5.4 \times 10^{-8} 90 \% \text{CL}$ | $< 3.5 \times 10^{-6} 90 \% \text{CL}$ |

Таблица 1. Вычисление вероятностей распадов

и  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$ , первый из которых использован для абсолютной нормировки результатов. Полученная величина BR $(K^+ \to \pi^0 \pi^0 e^+ \nu) = (2.54 \pm 0.14) \times$  $\times 10^{-5}$  согласуется с мировым средним в пределах статистических ошибок. Распад  $K^+ \to \pi^0 \pi^0 \pi^0 e^+ \nu$  не обнаружен. Установлен верхний предел  $BR(K^+ \rightarrow$  $\rightarrow \pi^0 \pi^0 \pi^0 e^+ \nu) < 5.4 \times 10^{-8} 90\%$  CL – в 65 раз ниже опубликованного в настоящее время. Из-за неопределенности в матричном элементе верхний предел приведен в наихудшем предположении, он может быть еще на 9 % ниже. Важный результат настоящей работы – отсутствие фона к этому распаду, что позволяет улучшать ограничение линейно (а не как квадратный корень) с объемом доступного статистического материала. Это обстоятельство открывает большие возможности для будущих экспериментов с высокой статистикой.

Мы благодарим наших коллег из ускорительного отдела за хорошую работу У-70 во время набора данных; коллег из отдела пучков – за устойчивую работу канала 21К, включая работу ВЧдефлекторов, и коллег из инженерно-физического отдела – за бесперебойную работу криогенной системы ВЧ-дефлекторов.

Финансирование работы. Работа выполнена в Институте физики высоких энергий им. А. А. Логунова Национального исследовательского центра "Курчатовский институт" при финансовой поддержке Российского научного фонда (грант # 22-12-0051).

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- В. С. Демидов, Е. П. Шебалин, Препринт ИТЭФ-31 (1991).
- J. Bijnens, G. Colangelo, G. Ecker, and J. Gasser, arXiv:hep-ph/9411311v1 16Nov 1994.
- 3. S. Blaser, Phys. Lett. B 345, 287 (1995).
- 4. J. Uretsky and J. Palfrey, Phys. Rev. 121, 1798 (1961).
- B. Adeva, L. Afanasyev, M. Benayoun et al. (Collaboration), Phys. Lett. B 704, 24 (2011).
- В. Н. Болотов, С. Н. Гниненко, Р. М. Джилкибаев, В. В. Исаков, Ю. М. Клубаков, В. Д. Лаптев, В. М. Лобашев, В. Н. Марин, А. А. Поблагуев, В. Е. Постоев, А. Н. Торопив, Письма в ЖЭТФ 47, 8 (1988).
- B. Powell, R. Heller, N. Ibold et al. (Collaboration), Nucl. Instrum. Meth. 198, 217 (1982).
- F.G. Binon, V.M. Buyanov, S.V. Donskov et al. (Collaboration), Nucl. Instrum. Meth. A 248, 86 (1986).
- 9. Ф. Бинон, К. Брикман, В.М. Буянов и др. (Collaboration), Препринт ИФВЭ-86-109 (1986).
- 10. V.F. Kurshetsov, PoS KAON09 051 (2009).
- A.S. Sadovsky, V.F. Kurshetsov, A.P. Filin et al. (Collaboration), Eur. Phys. J. C 78, 92 (2018).
- R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, *CERN Program Library; W5013* (1993); DOI:10.17181/CERN.MUH (1993).
- J. R. Batley, G. Kalmus, C. Lazzeroni et al. (Collaboration), JHEP 08, 159 (2014); ArXiv ePrint: 1406.4749.
- 14. B. Roger, arXiv:hep-ex/0207026v1 6 Jul 2002.