Наблюдение резонансной радиационно-столкновительной передачи колебательной энергии в молекулах при лазерном ИК многофотонном возбуждении в двухкомпонентной среде

Г. Н. Макаров¹⁾, А. Н. Петин

Институт спектроскопии РАН, 142190 Троицк, Москва, Россия

Поступила в редакцию 5 сентября 2024 г. После переработки 18 сентября 2024 г. Принята к публикации 19 сентября 2024 г.

Представлены наблюдению результаты исследований по резонансной радиационностолкновительной передачи колебательной энергии между молекулами при их селективном лазерном ИК многофотонном возбуждении в двухкомпонентной среде. Эксперименты проводились с молекулами BCl₃ природного изотопического состава в смеси с оптически активным сенсибилизатором и акцептором радикалов – молекулами CH₃F. Оба типа молекул резонансно поглощали излучение лазера. Наблюдалась резонансная радиационно-столкновительная передача энергии от молекул CH₃F к молекулам ¹⁰BCl₃. Показано, что указанный процесс приводит к большому увеличению выхода диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃ по сравнению с выходом диссоциации с нейтральными акцепторами радикалов. Зависимости выходов диссоциации молекул ВСІ3 от частоты возбуждающего лазерного излучения показывают структуру, которая хорошо коррелирует со структурой спектра ИК поглощения молекул CH₃F. Описан метод и приведены результаты экспериментов. Обсуждаются условия, при которых реализуется эффективная резонансная радиационно-столкновительная передача колебательной энергии между молекулами при лазерном ИК многофотонном возбуждении.

DOI: 10.31857/S0370274X24100204, EDN: YUPXUU

1. Введение. Процессы передачи энергии между частицами играют важную роль при проведении направленных фотофизических и фотохимических реакций [1-5]. В селективной лазерной ИК фотохимии и фотофизике, включая молекулярное лазерное разделение изотопов, особенно велика роль резонансных радиационно-столкновительных процессов передачи колебательной энергии между молекулами, когда передача энергии происходит одновременно с процессом возбуждения молекул лазером [4-8]. Резонансная передача энергии при этом реализуется за счет того, что молекулы обоих типов одновременно возбуждаются одним и тем же лазером на одной и той же частоте. Такие процессы имеют место при селективном лазерном ИК многофотонном возбуждении и диссоциации молекул с оптически активными сенсибилизаторами - молекулами, которые, как и исследуемые (целевые) молекулы, резонансно поглощают возбуждающее лазерное излучение [9, 10]. Процессы передачи энергии могут приводить к существенному увеличению скорости индуцированных лазером химических реакций, а также к изменению состава образующихся продуктов и парциального соотношения между ними [2–10]. С другой стороны, они могут также препятствовать проведению направленных реакций и получению желаемых продуктов [2–6, 11, 12].

Передача колебательной энергии от молекулсенсибилизаторов к исследуемым молекулам во многих случаях используется из-за отсутствия подходящих и мощных лазеров для их возбуждения. Так, на первоначальном этапе исследований по ИК многофотонному возбуждению и диссоциации молекул UF₆ не было мощных лазеров 16-мкм диапазона для возбуждения UF₆. Поэтому исследования по ИК диссоциации UF₆ проводились с использованием сенсибилизатора SF₆ [13–17]. Молекулы SF₆ использовались также для возбуждения и диссоциации целого ряда других молекул (XeOF₄ [17], SF₅Cl и CF₃I [18], CF₃Cl и (CF₃)₃CH [19]).

В качестве сенсибилизатора (донора колебательной энергии) используются молекулы, характеризующиеся большой колебательной теплоемкостью и имеющие интенсивные полосы поглощения в области частот генерации мощных ИК лазеров. Кроме того, желательно, чтобы молекулы-сенсибилизаторы имели более высокую энергию диссоциации, чем исследуемые молекулы. Молекулы SF₆ имеют сильную полосу ИК поглощения в области 10.6-мкм по-

 $^{^{1)}{\}rm e\text{-}mail:}$ g.makarov@isan.troitsk.ru

лосы генерации CO₂-лазера (колебание ν_3 , частота $\approx 948 \text{ см}^{-1}$ [20]). Для возбуждения и диссоциации молекул UF₆ в качестве сенсибилизаторов использовались также и другие молекулы (CF₄, CF₃Cl, CF₂Cl₂) [14]. Роль сенсибилизаторов состояла в том, чтобы за счет передачи поглощенной ими из лазерного поля энергии возбудить исследуемые молекулы и индуцировать их диссоциацию. Молекулы сенсибилизатора могут и сами сильно возбуждаться лазерным излучением и подвергаться диссоциации. Однако при умеренных плотностях энергии накачки можно реализовать условия, когда исследуемые молекулы подвергаются диссоциации, а молекулы сенсибилизатора – нет [13–17].

В указанных выше работах [13–18] исследуемые молекулы не поглощали лазерное излучение. Они возбуждались за счет передачи энергии от сенсибилизаторов. Недавно были проведены исследования по изотопно-селективному лазерному ИК многофотонному возбуждению молекул с использованием оптически активных сенсибилизаторов – молекул, которые сильно поглощают лазерное излучение на тех же частотах, на которых резонансно возбуждаются исследуемые молекулы [9, 10]. Выполнены также эксперименты по вовлечению молекул, не поглощающих лазерное излучение, в резонанс с лазерным полем за счет использования оптически активных сенсибилизаторов [21, 22].

В условиях, когда исследуемые молекулы и молекулы сенсибилизатора одновременно поглощают излучение лазера, происходит эффективный резонансный столкновительный обмен энергией между молекулами в присутствии лазерного поля, что приводит к сильному возбуждению обоих типов молекул [6-10]. Именно в таких условиях в работах [9, 10] была изучена изотопно-селективная диссоциация молекул ¹¹BCl₃ в естественной смеси изотопологов с сенсибилизатором и акцептором радикалов SF₆. Показано, что использование сенсибилизатора приводит к существенному увеличению эффективности диссоциации молекул ¹¹BCl₃. Отсутствие структуры в полосе ИК поглощения колебания ν_3 SF₆ не позволило в работах [9,10] наглядно продемонстрировать резонансный характер процесса передачи энергии от молекул сенсибилизатора к исследуемым молекулам. В данной работе представлены результаты, которые четко показывают резонансный характер процесса передачи энергии от молекул CH₃F к молекулам ¹⁰BCl₃. Тем самым установлено, что молекулы CH₃F являются активным сенсибилизатором и акцептором радикалов для эффективной диссоциации молекул ¹⁰BCl₃. Полученные результаты важны в плане реализации лазерного разделения изотопов бора на практике.

2. Установка и метод. Экспериментальная установка (рис. 1) включала в себя перестраиваемый по частоте импульсный CO_2 -лазер, формирующую оптику, газовую кювету из нержавеющей стали для облучения исследуемых молекул длиной 112 мм, объемом 24.2 см³, с окнами из KBr, калориметрический (ТПИ-2-5) и пироэлектрические (SensorPhysics Model 510) приемники излучения для измерения падающей и прошедшей через кювету энергии. Импульс излучения CO_2 -лазера состоял из переднего пика длительностью около 80 нс по полувысоте и хвостовой части длительностью ≈ 750 нс, в которой содержалась примерно третья часть энергии лазерного импульса. Лазерное излучение фокусировалось

Рис. 1. (Цветной онлайн) Схема экспериментальной установки. 1 – зеркало; 2 – ослабители лазерного излучения; 3 – короткофокусная линза; 4 – делительная пластинка; 5 – приемник излучения; 6 – кювета с облучаемым газом; 7 – поглотитель излучения

в облучаемую кювету линзой из NaCl с фокусным расстоянием f = 14 см. Размер лазерного пятна в фокальной области линзы был ≈ 0.01 см². Энергия излучения лазера в импульсе составляла ≈ 0.4 Дж. Плотность энергии возбуждающего излучения в фокальной области линзы достигала ≈ 40 Дж/см². Частота излучения лазера перестраивалась в диапазоне от 973.3 до 986.6 см⁻¹ (линии генерации лазера 10R(16)–10R(38)). Для привязки частоты линий излучения СО₂-лазера использовался оптикоакустический приемник с реперным газом NH₃.

Лазерная ИК многофотонная диссоциация молекул BCl₃ протекает [2, 3] по схеме:

$$BCl_3 + nh\nu \to BCl_2 + Cl,$$
 (1)

где *nhv* обозначает количество поглощенных лазерных ИК фотонов.

При облучении молекул на указанных выше частотах генерации лазера продукты диссоциации обогащались изотопом ¹⁰В, а остаточный после облучения газ BCl₃ обогащался изотопом ¹¹В. Выходы диссоциации, которые представляют собой доли распавшихся в облучаемом объеме молекул за один лазерный импульс, определялись по изменениям интенсивности полос в ИК спектрах поглощения для каждой из изотопных компонент BCl₃. Спектры поглощения измерялись с помощью ИК фурье-спектрометра ФТ-801. Выходы диссоциации β_{10} и β_{11} вычислялись по парциальному давлению каждой компоненты ^{*i*}BCl₃ (*i* = 10, 11) до (*p*_{*i*,0}) и после (*p*_{*i*}) облучения лазерными импульсами с использованием соотношения

$$\beta_i = \Gamma^{-1} [1 - (p_i/p_{i,0})^{1/N}], \qquad (2)$$

где $\Gamma \approx 0.02$ – отношение облучаемого объема ($V_{irr} \approx 0.48 \text{ см}^3$) к объему кюветы ($V_{\text{cell}} = 24.2 \text{ см}^3$), N – число импульсов облучения. Селективность $\alpha(^{10}\text{B}/^{11}\text{B})$ определялась как отношение выходов диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃:

$$\alpha(^{10}\mathrm{B}/^{11}\mathrm{B}) = \beta_{10}/\beta_{11}.$$
 (3)

Молекулы ¹¹BCl₃ и ¹⁰BCl₃ имеют интенсивные полосы поглощения с центрами соответственно около 954.2 см⁻¹ и 993.7 см⁻¹, которые соответствуют асимметричным колебаниям моды ν_3 связи B–Cl [23]. Изотопический сдвиг между указанными полосами поглощения составляет $\Delta \nu_{\rm is} \approx 39.5$ см⁻¹ [23]. Полоса поглощения колебания ν_3 молекул CH₃F (частота Q-ветви 1048.61 см⁻¹ [24]) примерно на 54.9 см⁻¹ смещена в высокочастотную сторону от центра полосы поглощения молекул ¹⁰BCl₃ (993.7 см⁻¹ [23]) (см. рис. 2а–с).

Однако ряд колебательно-вращательных линий P-ветви полосы ИК поглощения молекул ${
m CH_3F}$ совпадают с полосой поглощения молекул ${
m ^{10}BCl_3}$. При лазерном ИК многофотонном возбуждении CH₃F спектр поглощения возбужденных молекул смещается из-за ангармонизма колебаний в красную сторону, что приводит их к лучшему резонансу с лазерным полем [2, 3, 21, 22, 25]. Это дает возможность при изотопно-селективной диссоциации молекул ${
m ^{10}BCl_3}$ использовать молекулы CH₃F одновременно в качестве сенсибилизатора и акцептора радикалов.

Следует отметить, что молекулы CH_3F , как и молекулы BCl_3 , имеют довольно большую энергию диссоциации ($BCl_3 - \approx 110$ ккал/моль, $CH_3F - \approx 112$ ккал/моль по каналу образования $CH_3 + F$ и ≈ 110.2 ккал/моль по каналу образования $CH_2F + H$ [26]). Поэтому при сравнительно высоких плотностях

Рис. 2. (Цветной онлайн) (а) – Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃ и ¹⁰BCl₃. Давление BCl₃ в кювете – 0.35 торр, длина кюветы – 11.2 см. (b) – Полоса ИК поглощения колебания ν_3 молекул CH₃F. Давление CH₃F в кювете – 5 торр. (c) – Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃, ¹⁰BCl₃ и CH₃F. Давление BCl₃ в кювете – 0.35 торр, CH₃F – 5 торр

энергии возбуждения могла иметь место диссоциация и молекул CH₃F. Однако молекулы CH₃F характеризуются значительно большей, чем молекулы BCl₃, величиной ангармонизма колебаний возбуждаемой лазером моды ν_3 ($\Delta \nu_{anh} \approx 3.3 \text{ cm}^{-1}$ для BCl₃ [27] и $\Delta \nu_{anh} \approx 15.8 \text{ cm}^{-1}$ для CH₃F [28]), что затрудняет процесс их многофотонного возбуждения [2, 3]. При используемых нами плотностях энергии возбуждения ($\Phi \leq 40 \text{ Дж/см}^2$) эффективная диссоциация молекул CH₃F (без BCl₃) не происходила.

ии...

3. Результаты и их обсуждение. На рисунке 2а-с приведены спектры линейного ИК поглощения молекул BCl₃ (a), CH₃F (b) и смеси молекул BCl₃ с CH₃F (с) в области частот, на которых молекулы возбуждались лазером, полученные со спектральным разрешением $0.5 \, \text{сm}^{-1}$ с помощью спектрометра ФТ-801. При таком разрешении тонкая структура отдельных линий поглощения молекул CH₃F не разрешалась. В нижней части рис. 2а показаны участки *P*- и *R*-ветвей 10.6-мкм полосы генерации СО₂-лазера. Частотные отстройки между некоторыми используемыми в экспериментах линиями генерации лазера и линиями поглощения молекул CH₃F составляют $\leq 0.1 \, \text{см}^{-1}$ [29]. Наименьшие частотные отстройки реализуются для линий лазера 10R(16), 10R(24), 10R(30) и 10R(36) [29]. При возбуждении смеси молекул BCl₃ + CH₃F можно ожидать проявления структуры в спектральной зависимости выхода диссоциации молекул BCl₃, хотя многофотонное поглощение молекул в сильном ИК поле лазера может сильно повлиять на спектральную зависимость выхода диссоциации [2,3]. В экспериментах при возбуждении молекул BCl₃ + CH₃F именно на этих линиях генерации лазера нами наблюдались максимумы в выходах диссоциации молекул BCl₃.

Рисунок 3 демонстрирует методику измерений. На нем показаны спектры ИК поглощения смеси молекул $BCl_3 + CH_3F$ (при давлении 0.35 + 5.0 торр) до облучения (1) и после облучения (2) лазером на частоте 983.25 см⁻¹ (на линии 10R(32) лазера). Энергия возбуждающего лазерного излучения составляла около 0.3 Дж. Видно, что в результате облучения происходит диссоциация молекул BCl₃, причем как ¹⁰BCl₃, так и ¹¹BCl₃. При этом большого расхода газа CH₃F не наблюдается. Следует особо отметить, что в результате облучения BCl₃ в смеси с CH₃F образуется продукт BCl₂F. Полоса поглощения колебания ν_4 молекул ¹¹BCl₂F (частота 993.7 см⁻¹ [23]) практически совпадает с полосой поглощения колебания ν_3 молекул ¹⁰BCl₃ (накладывается на нее) [23]. В результате полученные нами данные по расходу ¹⁰ВСl₃ значительно занижены. Это не давало также возможности определять селективность диссоциации $\alpha(^{10}\text{B}/^{11}\text{B})$ молекул BCl₃ по расходу газа.

Основное внимание в экспериментах было уделено измерению выхода диссоциации молекул BCl₃ по расходу ¹¹BCl₃. На полосу поглощения молекул ¹¹BCl₃ никакие полосы поглощения продуктов не накладывались. При этом полагалось, что селективность диссоциации молекул BCl₃ в проводимых нами экспериментах сопоставима с селективностью их диссоциации с другими акцепторами радикалов [9, 10],

Рис. 3. (Цветной онлайн) Полосы ИК поглощения колебаний ν_3 молекул ¹¹BCl₃, ¹⁰BCl₃ и CH₃F до облучения (1) и после облучения (2) лазером. Исходное давление BCl₃ в кювете – 0.35 торр, CH₃F – 5 торр. Плотность энергии возбуждающего лазерного излучения $\leq 40 \text{ Дж/см}^2$. Число импульсов облучения N = 900

и она составляет $\alpha(^{10}{
m B}/^{11}{
m B}) \approx 2.5 - 3.5$ (см. работы [30, 31]). Кроме того, на полосу поглощения молекул ¹⁰BCl₃ накладывались линии поглощения молекул CH₃F (см. рис. 2с и 3), что также ограничивало уменьшение интенсивности полосы поглощения ¹⁰BCl₃ за счет облучения. Поэтому в представленных нами на рис. 4 и 5 данных выходы диссоциации молекул ¹⁰BCl₃ определены неточно, они занижены. Данные по выходу диссоциации ¹⁰BCl₃ приведены нами лишь для качественного сравнения с данными по измерению выхода диссоциации молекул ¹¹BCl₃. Для точного определение выхода, а также селективности диссоциации ¹⁰BCl₃ с использованием сенсибилизатора CH₃F требуется проводить массспектрометрический анализ остаточного после облучения газа BCl₃.

На рисунке 4 приведены зависимости выходов диссоциации молекул ¹¹BCl₃ и ¹⁰BCl₃ от частоты возбуждающего излучения CO₂-лазера.

Молекулы возбуждались на линиях 10R(16)– 10R(38). Энергия лазерного импульса – 0.3 Дж. Облучалась смесь 0.35 торр $BCl_3 + 5$ торр CH_3F . Установлено, что структура в зависимостях выходов диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃ от частоты возбуждающего излучения довольно хорошо коррелирует со структурой спектра линейного ИК поглощения колебания ν_3 молекул CH_3F , состоящей из отдельных колебательно-вращательных линий поглощения (рис. 2b). Максимальные выходы диссоциации ¹⁰BCl₃ и ¹¹BCl₃ наблюдаются при возбуждении молекул именно на тех линиях гене-

Рис. 4. (Цветной онлайн) Зависимости выходов диссоциации β_{10} (1) и β_{11} (2) от частоты возбуждающего лазерного излучения. Область перестройки линий лазера: 10R(16)–10R(38). Давление газа в кювете: 0.35 торр BCl₃ + 5 торр CH₃F. В верхней части рисунка показано частотное положение линий генерации CO₂-лазера, на которых возбуждались молекулы

рации лазера (R(24), R(30) и R(36)), для которых реализуются минимальные частотные отстройки от линий поглощения молекул CH₃F [29]. Полученные результаты ясно показывают резонансный характер процесса передачи энергии от молекул CH₃F к молекулам BCl₃.

На рисунке 5 показаны зависимости выходов диссоциации молекул ¹⁰BCl₃ и ¹¹BCl₃ от давления сенсибилизатора и акцептора радикалов CH₃F. Заметим сразу, что без CH₃F выход диссоциации молекул ¹⁰ВСl₃ больше таковой ¹¹ВСl₃. Селективность диссоциации ${}^{10}{\rm BCl}_3$ составляла $\alpha({}^{10}{\rm B}/{}^{11}{\rm B}) \approx 3.5$ (см. рис. 5). С использованием CH₃F, как отмечено выше, измерять селективность мы не могли, поскольку на полосу поглощения молекул ¹⁰BCl₃ накладывались полосы поглощения продукта ¹¹BCl₂F и сенсибилизатора. Как видно на рис. 5, в исследуемом диапазоне выходы диссоциации молекул BCl3 монотонно растут с увеличением давления CH₃F и увеличиваются почти на 2 порядка (в 60-80 раз) при увеличении давления CH₃F примерно от 1.0 до 15 торр. Этот результат существенно отличается от результатов, полученных ранее в случае ИК диссоциации молекул BCl₃ с другими акцепторами радикалов, таких как О₂, H₂ NO, HBr, H_2S и другие [30–33], которые не поглощают возбуждающее молекулы BCl₃ лазерное излучение. В случае использования оптически нейтральных акцепторов радикалов выход диссоциации молекул BCl₃ с ростом давления акцепторного газа увеличивался всего в 2-3 раза, а оптимальная величина выхода диссоциации BCl₃ достигалась при давлениях буферных газов 5–10 торр [30–33]. При дальнейшем увеличении давления буферного газа наблюдалась дезактивация возбужденных молекул и уменьшение их выхода диссоциации. Показано также, что в плане получения сравнительно высоких значений селективности и выхода диссоциации молекул BCl₃ хорошим акцептором радикалов является кислород [32, 33]. Полученные нами зависимости выходов диссоциации молекул BCl₃ от частоты возбуждающего

Рис. 5. (Цветной онлайн) Зависимости выходов диссоциации β_{10} (1) и β_{11} (2) от давления сенсибилизатора и акцептора радикалов CH₃F. Давление газа BCl₃ в кювете – 0.35 торр, плотность энергии возбуждающего лазерного излучения $\leq 40 \text{ Дж/см}^2$

излучения и от давления сенсибилизатора и акцептора радикалов CH₃F четко показывают, что именно за счет передачи колебательной энергии от молекул CH₃F исследуемым молекулам ¹⁰BCl₃ происходит существенное увеличение выхода диссоциации BCl₃. Эффективная передача колебательной энергии от молекул CH₃F к молекулам ¹⁰BCl₃ происходит ввиду резонансного характера процесса передачи энергии [1, 14, 25, 34]. В результате последующего довольно быстрого столкновительного процесса колебательно-колебательного $V \leftrightarrow V$ обмена энергий между молекулами ¹⁰BCl₃ и ¹¹BCl₃ (константа скорости $p\tau_{\rm V-V}\approx 0.5\,{\rm mkc}\cdot{\rm торр}$ [24]) происходит возбуждение также и не поглощающих лазерное излучение молекул ¹¹BCl₃. Константа скорости колебательнопоступательной релаксации молекул BCl₃ в собственном газе составляет $p\tau_{V-T} \approx 5.8 \,\mathrm{мкc} \cdot \mathrm{торp}$, а в CH₃F – $p\tau_{V-T} \approx 15.3$ мкс · торр [24]. Поскольку полная длительность возбуждающего лазерного импульса составляла ≈ 0.75 мкс, в проведенных нами экспериментах реализовывался преимущественно радиационно-столкновительный режим возбуждения молекул.

Газообразные продукты, которые образовывались в результате лазерной ИК многофотонной диссоциации молекул BCl₃ в смеси с CH₃F и последующих химических реакций, идентифицировались по их спектрам ИК поглощения в спектральной области примерно от 750 см^{-1} до 3600 см^{-1} . Установлено, что основными конечными продуктами являются ${}^{10}\text{BCl}_2\text{F}$ и ${}^{11}\text{BCl}_2\text{F}$, ${}^{10}\text{BClF}_2$ и ${}^{11}\text{BClF}_2$, а также HCl.

4. Заключение. Изучена резонансная передача колебательной энергии при изотопно-селективной лазерной ИК многофотонной диссоциации молекул BCl₃ в смеси с оптически активным сенсибилизатором и акцептором радикалов – молекулами CH₃F. Молекулы CH₃F имеют структурированную полосу ИК поглощения, перекрывающуюся с полосой поглощения молекул ¹⁰BCl₃, что позволяет наблюдать процесс резонансной радиационно-столкновительной передачи колебательной энергии от молекул CH₃F к молекулам ¹⁰BCl₃.

Показано, что зависимости выходов диссоциации молекул BCl₃ от частоты возбуждающего лазерного излучения имеют структуру, которая хорошо коррелирует со структурой спектра ИК поглощения колебания ν_3 молекул CH₃F. Установлено, что указанный процесс приводит к значительному (более, чем в 5–10 раз) увеличению выхода диссоциации молекул ¹⁰BCl₃ по сравнению с выходом диссоциации при облучении с нейтральными акцепторами радикалов.

Полученные результаты четко показывают резонансный характер индуцированных мощным ИК лазером процессов передачи энергии от молекул сенсибилизатора CH₃F к исследуемым молекулам ¹⁰BCl₃ и представляют большой интерес в плане применения лазерных методов для разделения изотопов бора на практике.

Финансирование работы. Исследование выполнено в рамках государственного задания FFUU-2022-0004.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

- J. T. Yardley, in Introduction to Molecular Energy Transfer, Academic, N.Y. (1980), p. 130.
- V.N. Bagratashvili, V.S. Letokhov, A.A. Makarov, and E.A. Ryabov, *Multiple Photon Infrared Laser Photophysics and Photochemistry*, Harwood Acad. Publ., Chur (1985).
- C. D. Cantrell (editor), Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Topics in Current Physics, Springer-Verlag, Berlin (1986), v. 35.
- 4. Г. Н. Макаров, УФН **192**, 569 (2022).

- 5. Г. Н. Макаров, УФН **194**, 48 (2024).
- Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ 112, 226 (2020).
- Г. Н. Макаров, А. Н. Петин, Квантовая электроника 50, 1036 (2020).
- 8. Г. Н. Макаров, А. Н. Петин, ЖЭТФ **159**, 281 (2021).
- Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ 117, 734 (2023).
- 10. Г. Н. Макаров, А. Н. Петин, ЖЭТФ 165, 14 (2024).
- В.Б. Лаптев, Е.А. Рябов, Квантовая электроника 13, 2368 (1986).
- В. Б. Лаптев, Е. А. Рябов, Химическая физика 7, 165 (1988).
- R.S. Karve, S.K. Sarkar, K.V.S. Rama Rao, and J.P. Mittal, Chem. Phys. Lett. 78, 273 (1981).
- 14. R. S. Karve, S. K. Sarkar, K. V. S. Rama Rao, and J. P. Mittal, Appl. Phys. B 53, 108 (1991).
- K. C. Kim, S. Freund, R. K. Sander, D. F. Smith, and W. B. Person, J. Chem. Phys. 78, 32 (1983).
- C. Chin, H. Hou, Yi. Bao, and T. Li, Chem. Phys. Lett. 101, 69 (1983).
- C. Angelie, M. Cauchetier, and J. Paris, Chem. Phys. 66, 129 (1982).
- M. Cauchetier, M. Luce, and C. Angelie, Chem. Phys. Lett. 88, 146 (1982).
- В. Н. Баграташвили, В. Н. Буримов, Л. Е. Деев, В. И. Носков, А. П. Свиридов, Квантовая электроника 10, 1682 (1983).
- R. S. McDowell, B. J. Krohn, H. Flicker, and M. C. Vasquez, Spectrochim. Acta 42A, 351 (1986).
- Г. Н. Макаров, А. Н. Петин, Письма в ЖЭТФ 115, 292 (2022).
- В. Б. Лаптев, Г. Н. Макаров, А. Н. Петин, Е. А. Рябов, ЖЭТФ 162, 60 (2022).
- D. F. Wolfe and G. L. Humphrey, J. Mol. Struct. 3, 293 (1969).
- P. L. Houston, A. V. Nowak, and J. I. Steinfeld, J. Chem. Phys. 58, 3373 (1973).
- 25. Г.Н. Макаров, Письма в ЖЭТФ 115, 703 (2022).
- 26. В. Н. Кондратьев (ред.), Энергии разрыва химических связей, потенциалы ионизации и сродство к электрону, Наука, М. (1974).
- H. B. Карлов, Ю. Н. Петров, А. М. Прохоров, О. М. Стельмах, Письма в ЖЭТФ 11, 220 (1970).
- A. Owens, A. Yachmenev, J. Kupper, S. N. Yurchenko, and W. Thie, Phys. Chem. Chem. Phys. 21, 3496 (2018).
- D. G. Biron, R. J. Temkin, B. Lax, and B. G. Danly, Opt. Lett. 4, 381 (1979).
- Ю. Р. Коломийский, Е. А. Рябов, Квантовая электроника 5, 651 (1978).

- Z. Peiran, Z. Wensen, and Z. Yuying, Chinese J. Lasers 8(10), 20 (1981).
- 32. Р.В. Амбарцумян, Ю.А. Горохов, В.С. Летохов, Г.Н. Макаров, Е.А. Рябов, Н.В. Чекалин, Квантовая электроника 2, 2197 (1975).
- 33. Р.В. Амбарцумян, Ю.А. Горохов, В.С. Летохов, Г.Н. Макаров, Е.А. Рябов, Н.В. Чекалин, Квантовая электроника 3, 802 (1976).
- 34. B.Y. Mohan, J. Chem. Phys. 46, 98 (1967).