Об особенностях нелинейного отклика колебательной природы диэлектрических сред при двухволновом смешении

М. С. Гусельников¹⁾

Университет ИТМО, 197101 С.-Петербург, Россия

Поступила в редакцию 28 октября 2024 г. После переработки 19 ноября 2024 г. Принята к публикации 20 ноября 2024 г.

В настоящей работе аналитически получено соотношение, устанавливающее связь между коэффициентом нелинейного показателя преломления колебательной природы $n_2(\omega)$ и кубической восприимчивостью $\chi^{(3)}(\omega'; \omega', \omega, -\omega)$ колебательной природы через известные из справочной литературы оптические, спектральные и тепловые характеристики вещества. Это соотношение позволяет рассчитывать нелинейный набег фазы низкоинтенсивного зондирующего излучения на частоте ω' в поле мощной терагерцовой волны накачки на частоте ω . Приведены теоретические оценки кубической восприимчивости $\chi^{(3)}(\omega'; \omega', \omega, -\omega)$ воды и кварцевого стекла для эксперимента типа терагерцового эффекта Керра. Полученные результаты находятся в хорошем согласии с экспериментальными данными.

DOI: 10.31857/S0370274X25010059, EDN: UMGTCW

1. Введение. Первые исследования явлений, возникающих при взаимодействии с веществом терагерцового (ТГц) излучения, которое условно можно определить как электромагнитное излучение в диапазоне частот 0.1–10 ТГц [1], были начаты еще в первой половине прошлого века [2]. Однако активное изучение эффектов, индуцируемых полем интенсивного ТГц излучения, началось лишь в последние десятилетия, когда получили широкое распространение эффективные источники и приемники мощных ТГц волн [1, 3]. Интенсивное ТГц излучение оказалось незаменимым инструментом для нелинейной спектроскопии вещества, поскольку в ТГц спектральном диапазоне находятся фундаментальные частоты колебаний атомов, молекул и молекулярных кластеров многих материалов, а длительность ТГц импульсов, составляющая единицы-десятки пикосекунд, соответствует характерным временам протекания динамических микропроцессов в веществе, таких как релаксация фононов, электрон-дырочных пар и т.д. [4-8].

Среди методов ТГц спектроскопии, основанных на нелинейных эффектах, особенно популярны техники типа *pump* – *probe* (накачки–зондирования). Такие техники подразумевают облучение исследуемого материала двумя импульсами – мощным импульсом накачки и маломощным импульсом–зондом. Больпинство методов этого класса используют так называемый ТГц эффект Keppa (THz Kerr Effect), ко-

торый по существу представляет собой аналог оптического эффекта Keppa (Optical Kerr Effect) в ТГц диапазоне [9–13]. Суть этого эффекта заключается в том, что при распространении в исследуемой среде мощного линейно-поляризованного ТГц импульса накачки с центральной частотой спектра ω_p одновременно со слабым оптическим зондирующим импульсом с центральной частотой спектра ω_z , линейная поляризация которого повернута на угол 45° относительно поляризации ТГц импульса, оптический импульс испытывает наведенное двулучепреломление за счет нелинейного изменения показателя преломления среды вдоль направления колебаний электрического поля ТГц излучения. Наведенное двулучепреломление приводит к изменению направления поляризации зондирующего излучения, благодаря чему измеряя поляризацию можно определить нелинейный коэффициент n_2^{cross} , характеризующий так называемые эффекты перекрестного взаимодействия (cross-coupling effects) [14], который пропорционален кубической восприимчивости $\chi^{(3)}(\omega_z;\omega_z,\omega_p,-\omega_p)$ и вводится по аналогии с коэффициентом нелинейного показателя преломления вещества как $n = n_0 + n_2^{cross}I$, где n – показатель преломления среды на частоте оптического излучения, n₀ – линейный показатель преломления среды на частоте оптического излучения, І – усредненная по времени интенсивность ТГц излучения, измеряемая в Вт/см². Выделяют также мгновенный нелинейный коэффициент $n_{2,f}^{cross}$, обусловленный электронноколебательными процессами, и инерционный коэф-

 $^{^{1)}{\}rm e\text{-}mail:}$ msguselnikov@itmo.ru

фициент $n_{2,s}^{cross}$, обусловленный переориентацией молекул в веществе. В последнем случае вместо средней интенсивности в выражении для показателя преломления следует рассматривать свертку мгновенной интенсивности с функцией отклика среды. В настоящей работе, однако, речь идет только о мгновенной части нелинейного отклика, так что $n_2^{cross} = n_{2,f}^{cross}$.

Важным нюансом является тот факт, что коэффициент n_2^{cross} , измеряемый при двухволновом смешении, который в большинстве работ обозначается и именуется коэффициентом нелинейного показателя преломления n_2 , в строгом смысле таковым не является, хотя и определяется аналогичным образом, что приводит к различным недоразумениям. В частности, в работе [11] с помощью ТГц эффекта Керра был определен n_2^{cross} воды, который составил порядка $10^{-12} \,\mathrm{cm}^2/\mathrm{Br}$. Позже в работе [15] было сообщено об обнаружении методом Z-Scan гигантской керровской нелинейности у воды в ТГц диапазоне, характеризуемой коэффициентом нелинейного показателя преломления n_2 порядка $10^{-10}\,\mathrm{Bt/cm^2}$. Этот результат был подтвержден рядом других экспериментов [16, 17], а гигантская ТГц нелинейность была обнаружена в ряде прочих жидких и твердых материалов [17–21]. Расхождение результатов измерений нелинейного показателя преломления воды, полученных с помощью ТГц эффекта Керра и другими методами, вызвало ряд вопросов, а наличие гигантской нелинейности в ТГц диапазон было поставлено под вопрос. В действительности, никакого противоречия между данными результатами нет, поскольку гигантская ТГц нелинейность была обнаружена при измерении коэффициента нелинейного показателя преломления n_2 , который пропорционален нелинейной кубической восприимчивости $\chi^{(3)}(\omega_n;\omega_n,\omega_n,-\omega_n)$ и характеризует нелинейное самовоздействие излучения в веществе, в то время как в работах, посвященных ТГц эффекту Керра, измерялся нелинейный коэффициент n_2^{cross} , который характеризует нелинейное взаимодействие двух волн в среде и не является коэффициентом нелинейного показателя преломления в строгом смысле этого слова. При такой постановке вопроса становится важной задача об установлении аналитической связи между нелинейными коэффициентами n_2 и n_2^{cross} , которая позволит при измерении любого из этих коэффициентов сразу восстановить другой, а также позволит оценивать величину нелинейного набега фазы зондирующего излучения в двухволновых экспериментах с использованием ТГц излучения. Решение этой задачи важно не только с точки зрения спектроскопических измерений, но и для корректной работы ряда оптических устройств, в частности для усиления слабых сигналов в поле ТГц волны накачки в нелинейном интерферометре Фабри–Перо [22].

В настоящей работе с помощью теории колебательной нелинейности, основанной на гипотезе, согласно которой основной вклад в нелинейный отклик вещества на поле ТГц излучения вносит ангармонизм валентных молекулярных колебаний (stretching vibrations), выведены аналитические выражения для коэффициента n_2^{cross} , и для отношения $n_2^{\text{cross}}(\omega_z)/n_2(\omega_p)$, которые могут быть расчитаны через известные из справочной литературы тепловые, оптические и спектральные характеристики вещества. Показано, что величина отношения $n_2^{\text{cross}}(\omega_z)/n_2(\omega_n)$ для сред, обладающих гигантской ТГц нелинейностью, зависит только от центральных частот взаимодействующих волн, центральной частоты фундаментальной полосы поглощения валентной колебательной моды и ее ширины. Продемонстрировано, что для воды и кварцевого стекла отношение $n_2^{\text{cross}}(\omega_z)/n_2(\omega_p)$ при центральных частотах волны накачки и зондирующего излучения $\omega_p/2\pi =$ = 1 ТГц и $\omega_z/2\pi$ = 375 ТГц (800 нм) составляет 5×10^{-3} и 5×10^{-5} соответственно, что хорошо согласуется с экспериментальными данными.

2. Нелинейный отклик вещества в поле ТГц излучения. Существуют различные подходы к описанию нелинейного отклика вещества в поле ТГц излучения. Ряд авторов считает, что его природа обусловлена индуцированной переориентацией молекул [23], резонансным возбуждением либрационных мод [23-25], туннельной ионизацией [26, 27], индуцированными фоноными поляритонами [21]. Однако первая теоретическая модель, которая была предложена для описания нелинейного отклика вещества при его возбуждении ТГц излучением (далее - теория колебательной нелинейности), основывается на гипотезе о колебательной природе гигантской нелинейности в ТГц спектральном диапазоне [28]. Согласно этой гипотезе, основной вклад в нелинейное изменение показателя преломления в поле ТГц излучения вносит ангармонизм валентных молекулярных колебаний, причем эти колебания могут быть описаны с помощью классического уравнения ангармонического осциллятора. Несмотря на "классичность" данной модели, она оказалась достаточно плодовитой, в частности, именно из нее впервые было предсказано наличие гигантской нелинейности у ряда веществ в ТГц спектральном диапазоне [28]. При этом теоретические оценки коэффициента нелинейного показателя преломления, полученные с помощью данной модели, прекрасно соответствуют всем существующим на данный момент экспериментальным данным [15, 18, 20]. Более того, согласно теории колебательной нелинейности n_2 прямо пропорционален (для сред с гигантской ТГц нелинейностью) квадрату коэффициента теплового расширения вещества α_T , который, как известно, зависит от температуры. В частности для воды он равен нулю при 4 °C, откуда следует, что при данной температуре n_2 воды также должен быть близок к нулю. Этот факт стал поводом для сомнений в справедливости теории колебательной нелинейности, например, у авторов работы [23], которые на эксперименте не обнаружили никакой разницы в нелинейном поглощении водой ТГц излучения при 21 °C и 4 °C. Для разрешения этих сомнений авторы [29] экспериментально получили температурную зависимость коэффициента нелинейного показателя преломления воды в ТГц диапазоне, которая прекрасно согласуется с предсказаниями теории колебательной нелинейности. Таким образом, существуют серьезные основания полагать, что гигантская ТГц нелинейность действительно имеет колебательную природу.

Согласно теории колебательной нелинейности поляризационный отклик $P = P_{\text{lin}} + P_{nl}$ изотропной диэлектрической среды в поле линейнополяризованного ТГц излучения может быть описан системой параметрически связанных скалярных уравнений [30]

$$\begin{cases} \ddot{P}_{\rm lin}^{v} + \gamma_{v} \dot{P}_{\rm lin}^{v} + \omega_{0,v}^{2} P_{\rm lin}^{v} = q_{v} N_{v} \alpha_{v} E \\ \ddot{P}_{\rm nl}^{v} + \gamma_{v} \dot{P}_{\rm nl}^{v} + \omega_{0,v}^{2} P_{\rm nl}^{v} = R P_{\rm lin}^{v} - \frac{b [P_{\rm lin}^{v}]^{3}}{q_{v}^{2} N_{v}^{2}} \\ \ddot{R} + \gamma_{v} \dot{R} + \omega_{0,v}^{2} R = 2a^{2} [P_{\rm lin}^{v}]^{2} / q_{v}^{2} N_{v}^{2}, \end{cases}$$
(1)

где точка указывает на операцию дифференциирования по времени, $P_{\rm lin}^{(v)}$ и $P_{\rm nl}^{(v)}$ – линейная и нелинейная поляризации колебательной природы соответственно; $\omega_{0,v}$ – центральная частота фундаментальной полосы поглощения валентной колебательной моды (в данной модели полагается, что доминирующий вклад в нелинейное изменение показателя преломления вносит только одна валентная колебательная мода, поэтому достаточно учесть только одну резонансную частоту; при необходимости можно учесть наличие нескольких колебательных мод, как это сделано в работе [19]); γ_v – ширина колебательной полосы поглощения; q_v – эффективный заряд колебательной моды; N_v – концентрация молекулярных осцилляторов в веществе; $\alpha_v = q_v/m_v$, где *m_v* – эффективная масса молекулярного осциллятора; Е – напряженность электрического поля излучения; а и b – коэффициенты, характеризующие вели-

чину квадратичного и кубического ангармонизма молекулярных колебаний, соответственно; R – функционал, учитывающий вклад локального ангармонизма молекулярных колебаний в кубический макроскопический поляризационный отклик, который присутствует даже в изотропных средах, если они состоят из ассиметричных молекул. Поскольку в рассматриваемых двухволновых экспериментах в среде распространяется, помимо ТГц волны, также и волна другой частоты, которая может быть как ТГц, так и оптической, то систему (1) для корректного учета линейной дисперсии необходимо дополнить электронным осциллятором, описывающим линейный поляризационный отклик, возникающий в результате взаимодействия излучения с электронными переходами

$$\ddot{P}_{\rm lin}^{el} + \gamma_{el} \dot{P}_{\rm lin}^{el} + \omega_{0,el}^2 P_{\rm lin}^{el} = AE, \qquad (2)$$

который, хотя и совпадает по форме с уравнением, описывающим линейный поляризационный отклик колебательной природы, тем не менее имеет принципиально иную физическую природу. Здесь $\omega_{0,el}$ – центральная частота резонансного электронного перехода, γ_{el} характеризует ширину этого перехода, A – некоторый экспериментально определяемый коэффициент, пропорциональный силе электронного осциллятора. Очевидно, что $P_{\text{lin}} = P_{\text{lin}}^v + P_{\text{lin}}^{el}$.

Использование уравнений (1) и (2) подразумевает, что ТГц волна индуцирует нелинейный отклик только колебательной природы (что оправдано, так как частоты электронных переходов существенно отстоят от колебательных частот), а зондирующая волна в силу своей маломощности вносит вклад только в линейный отклик. Проанализируем далее поляризационный отклик вещества при его одновременном возуждении монохроматическим излучением на частотах ω_p и ω_z , т.е. когда поле, возбуждающее вещество, задается выражением

$$E = \frac{1}{2}E_{p}e^{i\omega_{p}t} + \text{c.c.} + \frac{1}{2}E_{z}e^{i\omega_{z}t} + \text{c.c.}, \qquad (3)$$

где E_p и E_z – амплитуды волны накачки и зондирующего излучения соответственно, причем $E_p \gg E_z$.

В таком случае линейный поляризационный отклик колебательного (v) и электронного (el) осцилляторов описывается выражениями

$$P_{\rm lin}^{v(el)} = \frac{1}{2} P_{0,\omega_p}^{v(el)} e^{i\omega_p t} + \frac{1}{2} P_{0,\omega_z}^{v(el)} e^{i\omega_z t} + {\rm c.c.},$$
(4)

где

$$P_{0,\omega_p}^{v(el)} = \frac{q_{v(el)}N_{v(el)}\alpha_{v(el)}}{\omega_{0,v(el)}^2 - \omega_p^2 + i\gamma_{v(el)}\omega_p}E_p,$$
(5)

Письма в ЖЭТФ том 121 вып. 1-2 2025

$$P_{0,\omega_z}^{v(el)} = \frac{q_{v(el)}N_{v(el)}\alpha_{v(el)}}{\omega_{0,v(el)}^2 - \omega_z^2 + i\gamma_{v(el)}\omega_z}E_z.$$
 (6)

Линейная поляризация $P_{\rm lin}^v$ порождает кубический макроскопический нелинейный отклик вещества, а также индуцирует локальный квадратичный ангармонизм молекулярных колебаний, который тоже вносит вклад в макроскопический кубический нелинейный поляризационный отклик среды. Квадратичный вклад описывается выражением

$$R = R_0 + \frac{1}{2} R_{2\omega_p} e^{2i\omega_p t} + \frac{1}{2} R_{2\omega_z} e^{2i\omega_z t} + \frac{1}{2} R_{\omega_s} e^{i\omega_s t} + \frac{1}{2} R_{\Delta\omega} e^{i\Delta\omega t} + \text{c.c.},$$
(7)

где

$$R_0 = \frac{a^2}{q_v^2 N_v^2 \omega_{0,v}^2} (|P_{0,\omega_p}^v|^2 + |P_{0,\omega_z}^v|^2), \tag{8}$$

$$R_{2\omega_{p(z)}} = \frac{a^2 (P_{0,\omega_{p(z)}}^v)^2 / q_v^2 N_v^2}{\omega_{0,v}^2 - 4\omega_{p(z)}^2 + 2i\gamma_v \omega_{p(z)}},$$
(9)

$$R_{\omega_s} = \frac{2a^2 P_{0,\omega_p}^v P_{0,\omega_z}^v / q_v^2 N_v^2}{\omega_{0,v}^2 - \omega_s^2 + i\gamma_v \omega_s},$$
(10)

$$R_{\Delta\omega} = \frac{2a^2 (P_{0,\omega_p}^v)^* P_{0,\omega_z}^v / q_v^2 N_v^2}{\omega_{\omega_z}^2 - \Delta\omega^2 + i\gamma_v \Delta\omega}.$$
 (11)

Здесь $\omega_s = \omega_z + \omega_p$ и $\Delta \omega = \omega_z - \omega_p$. Кубический нелинейный отклик P_{nl}^v возбуждается внешним полем на частотах, соответствующим различным комбинациям частот ω_p и ω_z , однако в рамках рассматриваемой задачи нас интересует отклик вещества только на частотах ω_p и ω_z . Последний возбуждается эффективным полем

$$\frac{1}{4} \left[2R_0 P_{0,\omega_z}^v + R_{2\omega_z} (P_{0,\omega_z}^v)^* + R_{\omega_s} (P_{0,\omega_p}^v)^* + R_{\Delta\omega} P_{0,\omega_p}^v - \frac{3b}{2q_v^2 N_v^2} \left(|P_{0,\omega_z}^v|^2 + 2|P_{0,\omega_p}^v|^2 \right) P_{0,\omega_z}^v \right] e^{i\omega_z t}$$
(12)

и описывается выражением

$$P_{nl,\omega_z}^v = \frac{3}{2} (\chi_{v,\omega_z}^{(3)} |E_p|^2 + \chi_{el,\omega_z}^{(3)} |E_z|^2) \frac{E_z}{2} e^{i\omega_z t} + \text{c.c.},$$
(13)

где

$$\chi_{v,\omega_{z}}^{(3)} = \left(2a^{2}\frac{2\omega_{0,v}^{2} - \omega_{s}^{2} + i\gamma_{v}\omega_{s}}{\omega_{0,v}^{2}(\omega_{0,v}^{2} - \omega_{s}^{2} + i\gamma_{v}\omega_{s})} + \frac{2a^{2}}{\omega_{0,v}^{2} - \Delta\omega^{2} + i\gamma_{v}\Delta\omega} - 3b\right) \times \\ \times \frac{(\omega_{0,v}^{2} - \omega_{z}^{2} + i\gamma_{v}\omega_{z})^{-2}}{|\omega_{0,v}^{2} - \omega_{p}^{2} + i\gamma_{v}\omega_{p}|^{2}} \frac{q_{v}N_{v}\alpha_{v}^{3}}{3}, \qquad (14)$$

Письма в ЖЭТФ том 121 вып. 1-2 2025

$$\chi_{el,\omega_{z}}^{(3)} = \left(2a^{2} \frac{3\omega_{0,v}^{2} - 8\omega_{z}^{2} + 4i\gamma_{v}\omega_{z}}{\omega_{0,v}^{2}(\omega_{0,v}^{2} - 4\omega_{z}^{2} + 2i\gamma_{v}\omega_{z})} - 3b \right) \\ \times \frac{(\omega_{0,v}^{2} - \omega_{z}^{2} + i\gamma_{v}\omega_{z})^{-2}}{|\omega_{0,v}^{2} - \omega_{z}^{2} + i\gamma_{v}\omega_{z}|^{2}} \frac{q_{v}N_{v}\alpha_{v}^{3}}{6}.$$
 (15)

Поскольку интенсивность зондирующей волны существенно меньше интенсивности волны накачки, то слагаемым (15) в (13) можно пренебречь. В таком случае кубический нелинейный отклик на частоте ω_z определяется кубической восприимчивостью $\chi_{v,\omega_z}^{(3)} \equiv \chi^{(3)}(\omega_z;\omega_z,\omega_p,-\omega_p)$. Для того, чтобы получить из кубической воспримчивости выражение для нелинейного коэффициента, запишем полную поляризацию среды на частоте ω_z

$$P_{\omega_z} = \left(\chi_{\omega_z}^{(1)} + \frac{3}{4}\chi_{v,\omega_z}^{(3)}|E_p|^2\right)\frac{E_z}{2}e^{i\omega_z t},\qquad(16)$$

где

$$\chi_{\omega_z}^{(1)} = \frac{q_v N_v \alpha_v}{\omega_{0,v}^2 - \omega_z^2 + i\gamma_v \omega_v} + \frac{A}{\frac{A}{\omega_{0,el}^2 - \omega_z^2 + i\gamma_{el}\omega_{el}}}$$
(17)

– линейная восприимчивость на частоте ω_z . Из (16) следует, что показатель преломления для зондирующей волны, находящейся в поле высокоинтенсивного ТГц излучения, записывается в виде

$$n_z = n_0(\omega_z) + \frac{1}{2}n_2^{cross}(\omega_z)|E_p|^2,$$
 (18)

где $n_0(\omega_z)$ – линейный показатель преломления на частоте зондирующего излучения, $n_2^{cross}(\omega_z) = 6\pi\chi^{(3)}(\omega_z;\omega_z,\omega_p,-\omega_p)/n_0(\omega_z)$. Выражение для $n_2(\omega_p)$ получается аналогичным образом при рассмотрении нелинейного отклика среды на частоте ω_p для второго уравнения системы (1). В таком случае для волны накачки

$$n_p = n_0(\omega_p) + \frac{1}{2}n_2(\omega_p)|E_p|^2,$$
(19)

где
$$n_2(\omega_p) = 3\pi \chi_{v,\omega_p}^{(o)} / n_0(\omega_p)$$
 и
 $\chi_{v,\omega_p}^{(3)} = (2a^2 \frac{3\omega_{0,v}^2 - 8\omega_p^2 + 4i\gamma_v\omega_p}{\omega_{0,v}^2(\omega_{0,v}^2 - 4\omega_p^2 + 2i\gamma_v\omega_p)} - 3b) \times \frac{(\omega_{0,v}^2 - \omega_p^2 + i\gamma_v\omega_p)^{-2}}{|\omega_{0,v}^2 - \omega_p^2 + i\gamma_v\omega_v|^2} \frac{q_v N_v \alpha_v^3}{3}.$ (20)

(2)

Заметим, что коэффициент n_2^{cross} в два раза больше коэффициента n_2 даже при $\omega_z = \omega_p$, поскольку волна накачки и зондирующее излучение могут быть разделены пространственно [14]. Это явление также известно, как эффект запаздывания слабой волны (weak-wave retardation) [31]. Чтобы установить связь между коэффициентами $n_2^{cross}(\omega_z)$ и $n_2(\omega_p)$, рассмотрим отношение их действительных частей, при этом учтем, что для сред с гигантской ТГц нелинейностью коэффициентом b можно пренебречь [32]

$$\frac{n_{2,\mathrm{Re}}^{\mathrm{cross}}(\omega_z)}{n_{2,\mathrm{Re}}(\omega_p)} =$$

$$= \frac{2n_0(\omega_p)}{n_0(\omega_z)} \mathrm{Re} \left[\left(\frac{2\omega_{0,v}^2 - \omega_s^2 + i\gamma_v\omega_s}{\omega_{0,v}^2 - \omega_s^2 + i\gamma_v\omega_s} \right) + \frac{1}{\omega_{0,v}^2 - \Delta\omega^2 + i\gamma_v\Delta\omega} \right) (\omega_{0,v}^2 - \omega_s^2 + i\gamma_v\omega_z)^{-2} \right] / \mathrm{Re} \left[\frac{3\omega_{0,v}^2 - 8\omega_p^2 + 4i\gamma_v\omega_p}{\omega_{0,v}^2 - 4\omega_p^2 + 2i\gamma_v\omega_p)(\omega_{0,v}^2 - \omega_p^2 + i\gamma_v\omega_p)^2} \right]. \tag{21}$$

Для оценки этого выражения достаточно знать частоты излучения зонда и накачки, значения линейного показателя преломления на этих частотах, а также центральную частоту фундаментальной полосы поглощения валентной колебательной моды и ее ширину. Оценки этого выражения и способы его упрощения обсуждаются в следующем разделе.

3. Численные оценки. Для численных оценок выражения (21) рассмотрим два хорошо изученных материала – воду H₂O и кварцевое стекло SiO₂. Фундаментальные валентные колебательные полосы, которые определяют нелинейный отклик колебательной природы этих веществ в ТГц диапазоне, имеют максимум на 100 ТГц [33] и 32.8 ТГц [34], соответственно, а ширины этих полос составляют 10.6 [33] ТГц и 3 ТГц [34]. На рисунке 1 для кварцевого стекла и воды изображена зависимость отношения (21) от частоты зондирующего излучения при $\omega_p/2\pi = 1$. Данные о показателе преломления этих сред взяты из работ [33, 35] и [34, 36, 37] соответственно. Из графиков 1а, с видно, что в ТГц диапазоне нелинейный коэффициент n_2^{cross} , превышая n_2 , возрастает с ростом частоты зондирующего излучения, поскольку суммарная частота ω_s приближается к резонансной, уменьшая знаменатель выражения (14). В оптическом диапазоне (графики 1b, d) наблюдается обратная ситуация: n_2^{cross} меньше n_2 на несколько порядков и убывает с ростом частоты, поскольку суммарная и разностные частоты в (21) становятся существенно больше собственной частоты валентных колебаний среды, увеличивая знаменатель выражения (14).

В некоторых случаях, например при рассмотрении ТГц эффекта Керра, выражение (21) мож-

(Цветной онлайн) Зависимость Рис. 1. OTHO $n_2^{(\mathrm{cross})}$ коэффициента шения нелинейного _ $6\pi\chi^{(3)}(\omega_z;\omega_z,\omega_p,-\omega_p)/n_0(\omega_z)$ _ коэффик нелинейного показателя циенту преломления $3\pi\chi^{(3)}(\omega_p;\omega_p,\omega_p,-\omega_p)/n_0(\omega_p)$ n_2 _ от центральчастоты зондирующего излучения ω_z ной при $\omega_p/2\pi = 1 \, \mathrm{T}\Gamma$ ц для случая: (a) – воды и $\mathrm{T}\Gamma$ ц зондирующего излучения; (b) – воды и оптического зондирующего излучения; (с) – кварцевого стекла и ТГц зондирующего излучения: (d) – кварцевого стекла и оптического зондирующего излучения

но существенно упростить, поскольку типичные центральные частоты спектра, которые используются в таких экспериментах составляют порядка $\omega_p/2\pi =$ 1 ТГц и порядка $\omega_z/2\pi = 375$ ТГц (800 нм) [10, 11]. В таком случае можно приближенно положить $\omega_s \approx \omega_z$, $\Delta\omega \approx \omega_z$, а также $\omega_{0,v} \gg \gamma_v, \omega_p$, что существенно упростит выражение (21)

$$\frac{n_2^{\text{cross}}(\omega_z)}{n_2(\omega_p)} \approx \frac{2n_0(\omega_p)}{3n_0(\omega_z)} s^4 \times \frac{6(1-s^2)g^2s^2 + (1-3s^2)(1-s^2)^3 - g^4}{\left[(s^2-1)^2 + g^2\right]^3}, \quad (22)$$

где $s = \omega_{0,v}/\omega_z$, $g = \gamma_v/\omega_z$. Заметим, что слагаемые порядка γ_v/ω_z не могут быть опущены поскольку они сравнимы по величине со слагаемыми порядка $\omega_{0,v}/\omega_z$. Из (22) видно, что величина n_2^{cross}/n_2 определяется отношением оптической частоты к ТГц, поскольку стремится при больших ω_z к отношению ω_p^4/ω_z^4 .

Благодаря тому, что с помощью ТГц эффекта Керра исследовано большое количество материалов, результаты расчетов по полученным в настоящей работе формулам можно сравнить с экспериментальными данными. Коэффициент нелинейного показателя преломления воды в ТГц диапазоне составляет порядка 5×10^{-10} см²/Вт [18]; n_2 кварцевого стекла в ТГц диапазоне не измерялся (известны только измерения, выполненные для кристаллического кварца [19]). Линейный показатель преломления воды составляет $n_0(800 \text{ нм}) = 1.329$ [33], $n_0(1 \text{ T}\Gamma \text{ц}) = 2.13$ [35]; для кварцевого стекла: $n_0(800 \text{ нм}) = 1.453$ [38], $n_0(1 \text{ T}\Gamma \text{ц}) = 1.962$ [39]. Подставляя эти значения в (22) мы получаем для воды $n_2^{\text{cross}}/n_2 \approx 5 \times 10^{-3}$, откуда, соответственно, следует $n_2^{\text{cross}} \approx 3 \times 10^{-12} \text{ см}^2/\text{Вт}$. Экспериментальное значение, измеренное в ТГц эффекте Керра, составляет $4 \times 10^{-12} \text{ см}^2/\text{Вт}$ [11].

Для кварцевого стекла $n_2^{\text{cross}}/n_2 \approx 5 \times 10^{-5}$, однако ввиду отсутствия экспериментально измеренного n_2 , значение n_2^{cross} необходимо рассчитать напрямую из выражения (14), используя соотношения для коэффициентов [28]

$$a = -\frac{m_v \omega_{0,v}^4 L_0}{k_B} \alpha_T, \qquad (23)$$

где L_0 – диаметр молекулы (постоянная решетки в случае кристаллических тел), k_B – постоянная Больцмана и α_T – коэффициент теплового расширения;

$$b = \frac{6\pi q_v^2 N_v \omega_{0,v}}{\hbar (n_{0,v}^2 - 1)},$$
(24)

где \hbar – приведенная постоянная Планка, $n_{0,v}$ – часть линейного показателя преломления, обусловленная валентыми колебаниями, вдали от резонанса ($\omega_p \ll \omega_{0,v}$);

$$\alpha = \frac{\omega_{0,v}^2}{4\pi q_v N_v} (n_{0,v}^2 - 1).$$
(25)

Используя эти выражения, а также значения материальных параметров, которые приведены в Приложении, получаем из формулы (14) для кварцевого стекла $n_2^{\rm cross} \approx 2 \times 10^{-16} \,{\rm cm}^2/{\rm Br}$ (экспериментальное значение из ТГц эффекта Керра 3 × $10^{-16} \,{\rm cm}^2/{\rm Br}$ [10]). Из (21) также можно оценить коэффициент нелинейного показателя преломления кварцевого стекла $n_2 \approx 3 \times 10^{-12} \,{\rm cm}^2/{\rm Br}$, откуда, используя расчитанное выше отношение двух нелинейных коэффициентов, мы получаем то же значение $n_2^{\rm cross} \approx 2 \times 10^{-16} \,{\rm cm}^2/{\rm Br}$. Таким образом, все полученные оценки прекрасно соответствуют экспериментальным данным.

4. Заключение. В настоящей работе из теории колебательной нелинейности, основанной на гипотезе, согласно которой нелинейность показателя преломления в ТГц спектральном диапазоне определяется ангармонизмом валентных молекулярных колебаний (*stretching vibrations*), выведено соотношение, устанавливающее аналитическую связь между коэффициентом нелинейного показателя преломления колебательной природы

Письма в ЖЭТФ том 121 вып. 1-2 2025

 $n_2 = 3\pi \chi^{(3)}(\omega_p;\omega_p,\omega_p,-\omega_p)/n_0(\omega_p),$ характеризующим эффекты нелинейного самовоздействия ТГц излучения на частоте ω_p в веществе, и коэффициентом $n_2^{(\text{cross})} = 6\pi\chi^{(3)}(\omega_z;\omega_z,\omega_p,-\omega_p)/n_0(\omega_z),$ характеризующим эффекты перекрестного взаимодействия маломощного зондирующего излучения на частоте ω_z и высокоинтенсивного ТГц излучения накачки на частоте ω_p , при их распространении в веществе. Для численной оценки этого соотношения для заданных монохроматических компонент излучения зонда и накачки достаточно знать центральную частоту доминирующей валентной колебательной полосы поглощения материала и ее ширину. Это дает возможность оценивать величину нелинейного набега фазы зондирующего импульса в экспериментах типа *pump*-*probe*, используя разложение электрического поля импульса по монохроматическим компонентам в интеграл Фурье, что важно как для спектроскопических измерений, так и для создания устройств управления излучением на основе нелинейных интерферометров. Показано, что для воды и кварцевого стекла отношение $n_2^{\text{cross}}(\omega_z)/n_2(\omega_p)$ при центральных частотах $\omega_p/2\pi = 1$ ТГц и $\omega_p/2\pi = 375$ ТГц (800 нм) составляет 5×10^{-3} и 5×10^{-5} соответственно, что прекрасно согласуется с экспериментальными данными.

Приложение

Для оценки коэффициентов (23), (24), (25) использовались следующие значения материальных параметров: эффективная масса рассчитывалась аналогично [28] по формуле приведенной массы осциллятора Si-O $m_v = m_{\rm Si} m_{\rm O} / (m_{\rm Si} + m_{\rm O})$, где m_{Si}, m_O – массы атомов кремния и кислорода, соответственно; $L_0 = 5 \text{ Å}$ [40]; $\alpha_T = 2.1 \times 10^{-5} \text{ K}^{-1}$ [41] (несмотря на то, что макроскопический коэффициент теплового расширения кварцевого стекла составляет $0.55 \times 10^{-6} \,\mathrm{K}^{-1}$, в работе [41] было показано, что на микроскопическом уровне он больше почти на два порядка); величина заряда q_v принималась равной элементарному заряду $4.8 \times 10^{-10} \, \Phi p$; концентрация молекулярных осцилляторов расчитывалась как $N_v = \rho/(m_{\rm Si} + 2m_{\rm O}),$ где $\rho = 2.20 \, \text{г/см}^3$ – плотность кварцевого стекла [40]; колебательная часть нерезонансного линейного показателя преломления рассчитывалась по формуле $n_{0,v} = \sqrt{1 + n_0^2(\omega_p) - n_{el}^2(\omega_p)}$, где $n_{el}(\omega_p) = 1.7$ [34] – часть показателя преломления в ТГц диапазоне, обусловленная электронными и невалентными колебательными переходами.

Автор статьи выражает благодарность профессору С. А. Козлову за полезные обсуждения. **Финансирование работы.** Работа выполнена при финансовой поддержке Российского научного фонда (грант #24-22-00084).

Конфликт интересов. Автор данной работы заявляет, что у него нет конфликта интересов.

- X.C. Zhang, A. Shkurinov, and Y. Zhang, Nat. Photonics **11**(1), 16 (2017).
- A. Glagolewa-Arkadiewa, Nature, **113**(2844), 640 (1924).
- J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, Adv. Opt. Mater. 8(3), 1900681 (2020).
- P. U. Jepsen, D. G. Cooke, and M. Kochs, Adv. Opt. Mater. 5(1), 124 (2011).
- J. B. Baxter and G. W. Guglietta, Anal. Chem. 83(12), 4342 (2011).
- L. Zhang, Z. Min, Mujumdar, and S. Arun, Food Reviews International 39(3), 1733 (2023).
- X.-C. Zhang and J. Xu, Introduction to THz wave photonics, Springer, N.Y. (2010).
- X.-C. Zhang, E. Yiwen, L. Zhang, and A. Tcypkin, *Terahertz Liquid Photonics*, World Scientific, New Jersey (2023).
- M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, K. L. Yeh, and K. A. Nelson, Appl. Phys. Lett. **95**(23), 231105 (2009).
- S. Bodrov, Y. Sergeev, A. Murzanev, and A. Stepanov, J. Chem. Phys. **147**(8), 084507 (2017).
- S. Sarbak, G. Sharma, C.S. Joseph, W.E. Kucia, K. Dobek, R.H. Giles, and A. Dobek, Phys. Chem. Chem. Phys. 19(39), 26749 (2017).
- T. Kampfrath, R. K. Campen, M. Wolf, and M. Sajadi, J. Phys. Chem. Lett. 9(6), 1279 (2018).
- H. Zhao, Y. Tan, R. Zhang, Y. Zhao, C. Zhang, and L. Zhang, Opt. Lett. 46(2), 230 (2021).
- 14. W. R. Boyd, Nonlinear Optics, Elsevier, N.Y. (2020).
- A.N. Tcypkin, M.V. Melnik, M.O. Zhukova, I.O. Vorontsova, S.E. Putilin, S.A. Kozlov, and X.-C. Zhang, Opt. Express 27(8), 10419 (2019).
- F. Novelli, C.Y. Ma, N. Adhlakha, E.M. Adams, T. Ockelmann, D. Das Mahanta, P. Di Pietro, A. Perucchi, and M. Havenith, Appl. Sci. 10(15), 5290 (2020).
- K. J. Garriga Francis, X.-C. Zhang, M. Lim Pac Chong, and Y. E, Opt. Lett. 45(20), 5628 (2020).
- A. Tcypkin, M. Zhukova, M. Melnik, I. Vorontsova, M. Kulya, S. Putilin, S. Kozlov, and R. W. Boyd, Phys. Rev. Appl. 15(5), 054009 (2021).
- S. Zibod, P. Rasekh, M. Yildrim, W. Cui, R. Bhardwaj, J. M. Ménard, R. Boyd, and K. Dolgaleva, Adv. Opt. Mater. **11**(5), 2202343 (2023).

- A. Nabilkova, A. Ismagilov, M. Melnik, D. Gushchin, M. Zhukova, M. Guselnikov, S. Kozlov, and A. Tcypkin, IEEE Trans. Terahertz Sci. Technol. 14(5), 718 (2024).
- Y. Huang, Y. Lu, W. Li, X. Xu, X. Jiang, R. Ma, and J. Xu, Light Sci. Appl. 13(1), 212 (2024).
- H. Gibbs, Optical bistability: controlling light with light, Elsevier, N.Y. (2012).
- C. Millon, J. Schmidt, S. Ramos, E. van Dam, A. Buchmann, C. Saraceno, and F. Novelli, Adv. Opt. Mater. 12(11), 115319 (2022).
- F. Novelli, L. Ruiz Pestana, K.C. Bennett, F. Sebastiani, E.M. Adams, N. Stavrias, and M. Havenith, J. Phys. Chem. Lett. **124**(24), 4989 (2020).
- F. Novelli, C. Hoberg, E. M. Adams, J. M. Klopf, and M. Havenith, Phys. Chem. Chem. Phys. 24(2), 653 (2022).
- A. Ghalgaoui, L. Koll, B. Schutte, B. Fingerhut, K. Reimann, M. Woerner, and T. Elsaesser, J. Phys. Chem. Lett. 11(18), 7717 (2020).
- A. Ghalgaoui, B. P. Fingerhut, K. Reimann, T. Elsaesser, and M. Woerner, Phys. Rev. Lett. 129(9), 097401 (2021).
- K. Dolgaleva, D. V. Materikina, R.W. Boyd, and S.A. Kozlov, Phys. Rev. A 92(2), 023809 (2015).
- A. Nabilkova, A. Ismagilov, M. Melnik, A. Tsypkin, M. Guselnikov, S. Kozlov, and X. C. Zhang, Opt. Lett. 48(5), 1312 (2023).
- M. S. Guselnikov, M. O. Zhukova, and S. A. Kozlov, Journal of Optical Technology 89(7), 371 (2022).
- R. Y. Chiao and P. L. Kelley, Phys. Rev. Lett. 17(22), 1158 (1966).
- M. Guselnikov, M. Zhukova, and S. Kozlov, Opt. Spectrosc. 131(2), 268 (2023).
- 33. G.M. Hale and M. Querry, Appl. Opt. **12**(3), 555 (1973).
- 34. R. Kitamura, L. Pilon, and M. Jonasz, Appl. Opt. 46(33), 8118 (2007).
- J. Zhou, X. Rao, X. Liu, T. Li, L. Zhou, Y. Zheng, and Z. Zhu, AIP Adv. 9(3), 035346 (2019).
- 36. Y. Arosa and R. de la Fuente, Opt. Lett. 45(15), 4268 (2020).
- 37. S. Popova, T. Tolstykh, and V. Vorobev, Opt. Spectrosc. 33(4), 444 (1972).
- 38. I. H. Malitson, J. Opt. Soc. Am. 55(10), 1205 (1965).
- M. Naftaly and R. E. Miles, J. Appl. Phys. 102(4), 043517 (2007).
- S. Mizutani, I. Ohdomari, T. Miyazawa, T. Iwamori, I. Kimura, and K. Yoneda, J. Appl. Phys. 53(3), 1470 (1982).
- B. Deng, Y. Shi, and F. Yuan, Materialia **12**(3), 100752 (2020).