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We study the response of the energy levels of a quantum chaotic system to
some arbitrary external perturbation. We argue that the statistical properties of
the energy dispersion depends only on the mean-level spacing and a generalised
conductance. A new rescaling is introduced after which the statistical correlations
of the energy levels become universal. Evidence is provided frormn both analytical
and numerical calculations.

The Wigner—Dyson distribution ! has shown considerable success in describing
the level correlations of a variety of complex systems ranging from systems with
many degrees of freedom and strong interactions {such as atomic nuclei) to the
quantum mechanical motion of particles in irregular potentials (such as disordered
metallic grains or quantum dots). Equally, it is capable of describing Hamiltomans
governed by simple dynamics such as hydregen in an external magnetic field. In
this semse the distribution is a manifestation if not a definition of quantum chaos.
However, frequently we are interested in the response of the energy levels of a
system to the action of some external perturbation "% Here, we introduce a
simple rescaling which reveals a higher level of universality in spectral correlations.

Suppose a Hamiltonian, H depends on an external perturbation through some
parameter X, having eigenvalues given by the random functions, FE;(X). With
no loss of generality we assume that (9E;(X)/8X) =0, where () denotes an
average over X, and over a typical range of levels. W= demonstrate that the
rescaling,

z=+/C(0)X, «e(z)=E(X)/A (1)

where A 1is the mean-level spacing, and

c(0) = <<a€5§<)>2>, (2)

makes the statistics of e, (z) universal, dependent only on the Dyson ensemble.
C(0) describes the sensitivity of the spectrum to variations im X and provides, in
addition to A, the only characteristic of the system.

The energy dissipation rate 8€/8t caused by a time-dependent perturbation
X(1),

& pr OX 2
— ="—hC(0)( - 3

5= 7 eO(F) (3)
where (= 1(2) denotes the Dyson orthogonal (unitary) ensemble, gives to C{(0)
the physical meaning of “conductance.” An analogous formula was proposed by
Wilkinson * by making reasonable assumptions within random matrix theory. In

fact, for disordered systems (3) can be derived exactly ®. Although (3) has the
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form of a fluctuation-dissipation theorem we note that C(0) represents mesoscopic
(sample to sample, or Fermi level to Fermi level) rather than thermal fluctuations.
The relation (3) can therefore be described as a mesoscopic fluctuation-dissipation
theorem.

The universality can be illusirated by examining the chaotic motion of a particle
scattering from either a discrdered array of impurities (weakly disordered metals),
or from an irregular boundary (billiard). In the former, averaging over realizations
of disorder enables the rescaling to be demonstrated rigorously, and the details
are presented elsewhere °. Results of numerical simulation presented below show
that ensemble averaging is not crucial. Averaging over a typical range of energy
is sufficient to ensure universality.
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Fig.l. (a) Bare and (%) rescaled spectra shown for a typical range of energy levels for (1)
X = V/E., (i) X =V/E., and () X = de/hc. In (i) and (i) the scattering is from impurities
with W = 2.4, while in (i#1) it is from by an irregular boundary with geometry shown inset in
Fig. 2. Case (ii) differs from (1) in that an applied magnetic field breaks T-invariance making the
symmetry of (1) unitary. After rescaling the unitary samples, (1) and (w1} become statistically
equivalent, and distinct from the orthogonal sample, (3)

Firstly, we can apply an external perturbation in the form of an Aharonov-
Bohm flux through a 1ing. As particles circulate around the ring the wavefunction
acquires a phase, 2m¢e/hc = 2rX. Substitution of (2) in (3) gives the Thouless
formula © for conductance G =¢e*C(0)/2h ° which has the form recently proposed
in Ref.”.

The change of sign of ¢ under T-reversal implies unitary symmetry. We will
also examine a second external perturbation which can act on a system taken
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from either an orthogonal or unitary ensemble. Applying a potential step across a
sample {with half the sites raised and half lowered by a potential V) and setting
X =V/E. we obtain ° G=1272*C(0)/h. A fixed magnetic field can be used to
drive the system from an orthogonal to a unitary ensemble (reducing C(0) by a
factor of Z). According to universality, after rescaling with (1) the spectra should
become statistically indistinguishable from other unitary ensembles. Comparison
with X = ¢e/hc therefore provides a critical test of the universality.
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Fig.2 ¢(x) measured from disordered and chaotic samples for a variety of cases. Measurements with
X = V/E,. are shown for a range of disorder; W = 1.9 (open circles), W = 2.4 (filled diamonds},
and W =29 (open squares) at zero magnetic field, W = 2.4 {open diamonds) at non-zero field; and
for a chaotic billiard at zero field (crosses +), and at non-zero field {crosses x). Measurements
with X = ¢e/hc are shown for disorder W = 2.4 (filled triangles}, and for a chaotic bilhard {open
triangles) The chaotic billiard {shown inset) is assumed to be connected along the zigzag edge.
The asymptotic approximations te¢ c(z) are shown for the unitary (continuous} and orthogonal

{broken) ensembles. All ineasurements from samples with impurity scattermmg are averaged over

four realizations of the disorder

The simulations were performed with a tight-binding Anderson model with

on-site energies chosen randomly from the range —W/2 < W, < W/2 {W =0 for
she billiard).  The wmversaiity is llusirated auaiitatively in Fig. ! where the
rescaling is applied to three different specira. & quantitative test of the rescaling

is provided by the autocorrelation function of level “velocities,”

oy =] e 3, W4
o I AF

shown in Fig. 2. All the data from both the biliard and disordered sampies
collapse onto one of two curves according to the Dyson ensemble. In particular,

curve,” while at non-zero field it follows the “unitary curve,” coinciding with the
flux autocorrelator {X = ge/hc)

We have not succeeded in evaluating c{z) analytically, and the behavior of
she function is available only in asymptotic region of large z, where 485 o(z) =
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Fig.3. Measurements of the velocity distribution function P(e’), where € = 9¢/dz with symbols
corresponding to that used in Fig. 2. The variation of conductance, G as a function of disorder
1/W? is shown inset with X = ¢e/hc (open circles), and X = V/E. {crosses X). All measurements
for impurity scattering are averaged over four realizations of the disorder

—2/Bn%¢?, and for the unitary ensemble, c(z} =1 — 27°z? + O(z*) at vanishinz
z. These results can be obtained from the autocorrelator of density of states

fluctuations,
Y = ’/ZS (¢ —e:(7) w— e+ ENY —
k(w, z) <(1/V ) 1_}_6(6 €(z)) ble—w—¢(x+&))) -1

known exactly for both orthogonal and unitary ensembles °. For example, in the
unitary ensemble,

ku(w,m)=ReJ! dA f d/\z-iexpia:z{/\zw.\g\)+iur()x-—)».1)i, {

N

The expression k{w,r; can be used to show that the distribution of level
velocities, P(8¢/dz) is Gaussian with unit vanance for both unitary and orthogonai
ensembies. This prediction is confirmed by simaulation (Fig. 3} over & wide 1ange
of velocities. The variation of the conductance as a function of disorder 1s showr
inset, and is consistent witk the approximate 1/W? dependence of G predicted by
the Born approximation

In conciusion we have argued thai the dispersion of spectra of quantum
chaotic systems in rtespomse tc an arbiirary external perturbation depenm on
two parameters, the mean-level spacing, £ and a generalised conductance, (0.
Moreover, we have proposed and verified a rescaling in which the dependence
on these parameters can be removed. We suggest that the umiversality applies
to all classes of chaotic systemn with the same generality as the Wigner-Dyson

distribution.
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