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Properties of correlation functions of solutions of 1 +d KPZ equation in
the region of the strong interaction of fluctuations are considered. We prove that
analytical continuation of the solution realizing at d =1 to the dimensions | < d < 2
gives a solution with the dynamic index z ={(d + 2)/2. The possibility of alternative
solutions is discussed.

Kardar - Parisi - Zhang (KPZ) equation is written as
dh/dt =voV2h + A(VR)? 4+ ¢. (1)

Here h(t,r) is a scalar field, X is an interaction constant, 1y is a diffusion.
coefficient and {(t,r) is a random Gaussian “force” with the correlation function

(f(tl, I‘])f(tz, l‘z)) = ZTVo(S(tl — tz)(s(l'l - 1'2) ’ (2)

where T' is an effective temperature. Let us stress that a system described by (1)
is far from equilibrium.

KPZ equation describes roughening of an interface in different cases, like grows
of solids [1], two fluid flows [2,3], motion of domain walls [4] or boundaries of
clusters [5] etc. This equation is equivalent to the Burgers equation [6-8]. It is
also equivalent to the equation for the partition function of directed polymers [9]
and of dislocations [10] or vortices [11] in a random potential (in these cases we
should take the third coordinate instead of the time ¢). This variety of physical
contexts is associated with the universal character of KPZ equation representing
the long wavelength dynamics of any field h if it is invariant under A — h + const
but not invariant under h — —h.

At considering the interface in the 3d space or of the vortex in the 3d
lattice the quantity h should be considered as a function of the 2d radius-vector
r. Then fluctnations of the field h are relevant. It appears that the case of
“asymptotic freeedom” is realized that is the dimensionless coupling constant grows’
with increasing scale {12]. In this situation one can mnot say anything definite
about the long wavelength properties of correlation functions of A on the basis of
perturbative methods like renorm-group equations. Numerical experiments [13-15]
show a scaling long wavelength behavior. From a theoretical point of view it
is a surprising thing since in known exactly solvable models where “asymptotic
freedom” is simulated the long-wavelength behavior of correlation functions is not
of scaling type [16,17]. The possibility of the scaling behavior of the correlation
functions of h is related to famous cancellations of ultraviolet divergences in KPZ

model [18,19].
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Therefore a problem appears to determine theoretically the dynamic index z
characterizing correlation functions of h. As we know from the theory of second-
order phase tranmsitions it is useful to investigate the system with strong fluctuations
not only in the physical dimensionality but also near it. The equation (1) may
be considered in the space of any dimension d of r (the physical value being
d=2). We will investigate the behavior of the solutions of (1) for dimensions
d between 1 and 2. Some conclusions concerning d =2 can be derived further
by extrapolation of obtained results. For d =1 the exponent z can be derived
exactly [12,4,20,21] it is z=1.5 which is confirmed also numerically [13-15]. We
will demonstrate that analytical continuation of the solution with z=1.5 to the
dimensions 1 < d < 2 gives a solution with the exponent

d+2
z 7 (3)
This solution may be called “quasiequilibrium” since it has the same index z as
the equilibrium one.

To examine statistical properties of solutions of KPZ equation we will utilize a
diagram technique of the type firstly developed by Wyld [22] for the problem of
hydrodynamical turbulence and extended on a wide class of physical systems by
Martiit, Siggia and Rose [23]. A textbook description of the diagram technique can
be found in the book by Ma [24]. Note that this diagram technique is a classical
limit of the Keldysh diagram technique [25] applicable to any physical system.
As it was demonstrated by de Dominicis [26] and Janssen [27] (see also [28] and
[29]) Wyld’s diagrammatic technique is generated by a conventional quantum field
theory fashion starting from an effective action I. The corresponding methods of
investigation can be found in the monograph by Popov [30].

The explicit expression for the effective action I can be constructed on the
basis of nonlinear dynamic equations of a system. For KPZ equation the effective
action is

I= / dtdr (Eah/at — M(VR)? + 1 VAVA + iTuoi12> ) (1)

Here h is an auxiliary field “conjugated” to the field h. Introducing I enables
us to express the correlation functions of h in terms of functional integrals. For
example the pair correlation function is

F(tl — tz, ry — 1'2) = <h(t1, rl)h(tz, l‘g)) = /DhDil exp(iI)h(tl, I‘l)h(tg, l‘z) s (5)

where the functional integration over the fields h and h is implied. It is also
useful to define the Green’s function

G(tl - tz, ry — 1‘2) = —(h(tl, tl)il(tz, 1‘2)) . (6)

It is a susceptibility determining the linear response of the system to the external
“force” to be added to the right-hand side of the equation (1). Namely G is
an integral kernel in the linear relation between the external “force” and the
average value of h. Therefore the value of G(t,r) is equal to zero at t <0 as a
consequence of the causality principle.

Introduce instead of h,h new variables P, V in accordance with the definition

~

h= V,'p,‘ s Vih=—9; + iTp,' N (7)

302



where p; and #; are potential fields that is
Vipk =Vipi, Vil =Vyv;. 8)

These relations enable us to reduce the fields p; and ¥; to gradients of scalar fields.
The correlation functions {#p) and (%) can be reduced to the functions G and
F. The introduction of the new fields in accordance with (7) is analogous to one
performed in the work [18] for the case d=1. For d=1 this new representation
enabled us to prove some famous properties of the perturbation series generated
by KPZ equation [18], it appears to be useful also for any dimension 1 <d < 2.

In the new terms the effective action (4) is rewritten as the sum Io + 1) + I

where

Iy = /dt dr (p,-c?ﬁi/at + VoV.'inkflk) ) 9
L= -—)«/dtdr (V;p;ﬁ,f + T (2pipi Vitx — P?kalk)) ) (10)
/dt dr z\sz Vipr - (1)

The correlation functions (4 p) and (#7) can now be calculated in the framework
of the perturbation series. The bare values of G, D are determined by the
second-order part I of the effective action (9). Interaction vertices are determined
by the third-order terms I; and I; in the effective action. The renormalized value
of th: Green’s function G = ~(¥;p;) in Fourier representation can be written as

G(w, k) = (w +ivok? — E(w,k))_l, (12)

where T is the self-energy runction, represented by an infinite sum of one-particle

irreducible diagrams.
Expressions for ¥ and G in the region of the scaling behavior are

Y(w, k) = pro(w/pux), (13)
-1
G(w, k) = (w - #kU(U/ﬂk)) , (14)
where o is a dimensionless function and
bk o k5, (15)

z being the dynamic scaling exponent. The term upk® in the region can be

neglected.
Firstly we will prove that the “truncated” Green’s function G; related to an

average
/Dﬁ Dp exp(ilo + I1)vipk (16)

has the exponent (3). Then we will include the term I, (11) of the effective
action and show that this inclusion will not change 2. The idea of the proof is
close to one proposed in the paper [18] where the case d =1 was examined.

The “truncated” Green’s function G; can be written in the same form (14) as
the complete function with the the self-energy function ¥; represented. by an infinite
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sum of one-particle irreducible diagrams where only the vertices determined by
(10) are present. We would like to stress that the “truncated” dressed correlation
functions (¥;9x)1 and (pipx)1 are equal to zero. After a partial summation of
diagrams we may arrive at a diagrammatic series for ¥; where the bare vertices
but the dressed pair correlation functions figure. Since the correlation functions
(%:;%)1 and (pp): are zero this series contains really the functions G; only.

Now we should include into consideration the omitted interaction term I, (11)
in the effective action. Consider the “complete” self-energy function ¥ which we
will treat as a series over I;. Each term in this series is actually determined by
an infinite sequence of diagrams generated by the interaction terms in I; (10).
We will imply the same partial summation of the diagrams dressing the bare
Green’s function Gy into Gi. Then ¥ will be represented as a sum of diagrams
where the “truncated” Green’s functions G; and the bare vertices determined both
by the terms I; and I; in the effective action figure. Note that the “complete”
correlation function (v; vx) is not equal to zero, whereas the “complete” correlation
function (pp) is zero.

- Let us take G; in the form (14) with z =42 (3). Simple dimension estimations

show that then any contribution to both X; and ¥ has the form (13) with the
same index z. From this one could conclude that the above assumption is self
consistent and consequently (3) is the true exponment for the KPZ model. But
such a conclusion is potentially very dangerous. The problem is that in the
diagrammatic series for X; or ¥ ultraviolet logarithmic divergences might appear
which can change the exponent of the solution [31] or even destroy scaling
behavior. The famous peculiarity of KPZ model is that these divergences do not
appear in the diagrammatic serics both for the “truncated” and the “complete”
problems what we are going to demonstrate {(the absence of the divergences in the
“complete” KPZ problem on another language was proved in [19]).

As it is well known a loop of a diagram give rise to an integration over a
wave vector a in the .corresponding analytical expression. Therefore we should
prove the absence of the ultraviolet divergences in integrals corresponding to all
loops of diagrams representing contributions to ¥. The diagrams are constructed
from lines representing Gj-functions which we will mark by arrows directed from
p to 9. Then a loop constructed from lines directed clockwise or anticlockwise
give zero contribution because of causality properties of G-functions [18]. Therefore
we may consider only loops with some “inputs” and “outputs” where two G-lines
begin or end (a loop with one “input” and one “output” is depicted in the figure

input being designated by “in” and output by “out”).

out in

The “outputs” are produced only by the term I; (10) and “inputs” are
produced both by the term I; (10) and by the term I, (11). We see that in the
“input” and “output” vertices produced by Iy the derivative V acts on a field
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external to the loop. The same assertion is valid also for the “input” vertices
produced by I, since this term can be rewritten in the form

3,
L— / dtde XT* (352 Vi, ~ pipeVarl), (17)

where ! designates the field external to the loop. The property enables us to
prove that at large g the integral corresponding to the loop behaves as

qd+z . qn——2m . q—nz, (18)

where n is the number of vertices of the loop and m is the number of “inputs” or
“outputs”. It is not very difficult to check that the exponent here is negative for
n>2, m>1 and z determined by (3) if d < 2. Therefore the integral converges
at large gq.

Thus we proved that at | < d < 2 there are no any ultraviolet divergence
in the diagrammatic series for X; or ¥ where the bare vertices and the dressed
functions G, figure. It implies that the scaling solution with the value (3) of the
dynamic index does actually exist.

Now we may return to the original variable h. Using the relations (7) we find

/dt dr exp(iwt — tkr)F(t,r) = kA‘z_zf(w/ﬂk) ) (19)

which is a consequence of (14,12).

For d=2 numerical experiments show the value of z between 1.6 and 1.7 [13-
15] whereas the solution (3) gives z=2 at d=2 not coinciding with above value.
The reason of this contradiction is that the system of diagraminatic equations
is very complicated and really a solution with another exponent or even with a
nonscaling behavior may be .realized, our assertion concerns only the existence of
quasiequilibrium solution. Therefore the observed value of the index z can not
be find in the framework of 1 + e-expansion. The quasiequilibrium solution might
be realized as a metastable solution at some conditions, for example at different
character of short wavelength terms in the dynamic equation for h.
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