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The interaction of amplitude soliton with an impurity in a one dimensional
Peierls system is investigated. The total energy is calculated. It is shown that
bond soliton-impurity states may be formed.The soliton reflection coefficient and
the transition frequencies hetween the bound statgs are estimated.

The conductivity properties of most quasionedimensional Charge Density Waves
(CDW) systems are varied in wide limits by doping. It is known that due to
the selftrapping of the doped electron or the hole amplitude solitons are formed.
Up to date the problem of soliton-impurity interaction (the interaction of soliton
with the dopand ion in the case of doping) has not solved finally. The dynamic
of CDW is consiedered usually in the frameworks of the phase CDW Hamiltonian
[I-3]. Therefore only phase solitons can be taken into account. In this work we
study the interaction of the amplitude soliton with the impurity, localized near
the chain. We suppose that the interaction potential width is much smaller than
the soliton size, therefore we consiedere a local interaction.

The Hamiltonian of the ld Peierls model is

g= [ deuti_s 3 . A?
0—/ z ¥ [—zvp£0,+A(m)a++A(x) 0_]\P+F, (N

where \I’T(x)=(‘lli(z),\IlT_(:c)) are components of electron operators with momenta
near right and left Fermi points, vr is the Fermi velocity; o,,04 = o, +i0, are
Pauli matrixes, g is the electron-phonon interaction constant.

The interaction Hamiltonian has the form

Hine(z) = ¥ (2)Vi(2)¥(2) + ¥ (2)Va(2)oy ¥(2) + ¥l (2) V) (2)o_¥(z).  (2)

The first term in (2) describes the forward scattering, the second is due to the
backscattering. We will suppose that the interaction is localized on distances more
less than the soliton width &y, therefore

V1($)=V16(2:—1),‘), V2($)=V2(5($—ZE.’),
where z; is the impurity position, and V; =| V5 | e'?. For the sake of simplicity we
omit spin indexes and consieder the spin diagonal scattering only. By introducing
the Green function of the nonperturbated Schrodinger equation

(i18/0t +ivpo,8/0z — A(z)oy — Alz) 0_)G(z, 2/t — ') =

=8{(z — 2')o(t — t') (3)
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it is easily to obtain in mixed representation (z,w)

k) ®elE)

G I
(2,2",w) w—€\+16

A

where {pa(z)}={p+(z), ¢-r} is the complete set of nonperturbated Hamiltonian
eigenfunctions for a given function A(z).

From (1) - (3) we have that eigenfunctions of the Hamiltonian H = Ho + H;n:
are determinated from the following equation:

\Il(a:,E)=/dyG(:c,y, E)Hine(v)¥(y, E) = G(z, z:, E)V ¥ (2, E), (4)

s_( Vi Va
v (Vz* Vl)'

The eigenvalues E are determined from (4):

where

det(G(z:, zi, E)V — 1) =0
or

(| Va | =V})detG + V3’ Gyz + VoG + VittG — 1 =0. ()

Let us assume that in the abseace of an impurity there is one amplitude
soliton in the chain. In this case we take as a nonperturbed set of wavefunctions
{pa(z)} the ome soliton solution [4]:

_Ait+etvrp+ iAstanh[Az(z — z,)/vp)
2Le(e + Ayr)

Pie exp(ipz)

_ Ay +e—vpp— iAgtanh[As(z — z,)/vr]
2Le(e + A1)

O_e exp(ipz) (6)
for a continuum spectrum with the dispersion €2 =vip?+ A% A?=A24 A% L is
the chain length, and

VA,

Ve T e 2cosh[Az(z — z,)/vF]’ €= b )

for the local level. The deformation A(z)= A; +iAstanh[Az(z — z,)/vF] consists
of the constant term due to the polimer structure and the Peierls deformation
As(z) (z, is the soliton position).

After substituting (6), (7) to (5) we have the following equation for the shifts
of valent band levels é¢ = E — ¢(p):

_ 2  AZcosh™?(z) 2A;  Acosh™?(z)
0 (66.[/) - (6€L){V1(2 b m—)‘{" I V2 | COSﬂ( p -+ 6(6 T Al) )+
. .2Aztanh - A2
417 |sin g 2222RE o (S, Q
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where z =(z; — z,)A;/vrp . We obtain from (8) that

Azcosh_z(z)

be(p)L + be(—p)L =V1(2 - ele+ Ayq)

)+

2 2cosh ™2
+ | V2 | cos B( fl + Aicosh (2)

. 2A,tanh(z)
et iy Vel

For the local level Ey shift we have by the similar way that

§co = Eo + A1 = —(Vit | Vo [cosﬁ)m%s(;z(z). (10)
The total energy shift §W =W — W, is found from (9), (10)
§W(z, — ;)= b€+ beo =
cont
=i+ | V2| COSﬂ)EUF%ZhZ(Z)(VO - 2;)—
— | V2 |sin52—gA{2—tanh(z), (11)

where 1o is the filling factor of the local level (19=0,1,2), 6 =tan"1(Az/A1).
For the pure Peierls model (A, =0, 6#=7/2) we have from (11} that

§W(z, — z:) = (Vi+ | V2 | cos B) 2vpcf:hz(z) (vo — 1)—
| Vs sinﬂzg%—z—tanh(z). (12)
In the case
(Vi+ | V2 | cos B)(vo — 1) < —| | V2 | sin Bl4vp /g° (13)

we have the bond state of the soliton and the impurity. In other cases the energy
minimum is achieved at z —+ o0 or z — —o0

When obtaining the expression (9), (10), we have supposed that the energy
level shift is much smaller than the distance between the neighbour levels of the
quasicontinuous spectrum. It is right if Vi/vp,| Vo | /ur < 1 for all levels in
the valence band except a small vicinity of the valence band edge . But the
contribution of this vicinity to the total energy (l1) is small by the additional
factor of order of A/ep.

Now we estimate the transition frequencis between the soliton bound levels and
the soliton reflection coefficient on the impurity potential. We consider the soliton
as the quantum particle, which is discribed by the Hamiltonian [5]:

1 82
H,_—i—]‘l—sa_msz'{”éW(E‘,—mi), (14)

where M, is the soliton effective mass, z, is the solitone coordinate and §W(z, —
z;)is given by (12). In order to facilitate the problem we consider the forward
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scattering only (i.e. put V;=0) and suppose that Vi(rp— 1) < 0. Then we obtain
for the energy levels:

I
= 2 _1— 2
E, g 558(\/1+8M,|Uo|§0 1 2n)

and for the reflection coefficient

cos?(m/2/1 + 8M, | Up | &)
sinh®(7éok) + cos?(x/24/1 + 8M, | U, | £3)

where
| Uo =] AzVi(vo = 1)/2|, &0 =vr/As,

n is the integer, 0 < n < (/1 +8M, | Uy | €2 —1)/2 and k is the wavevector of
the soliton. For the effective mass of the soliton we have from (4] that

M, = 45
T bowlg?’
where wqo is the phonon frequency with momentum near 2pgp.

Taking into account the data for the polyacetylene [5]: A, ~ 0.7eV, vp ~ 6eVA,
wd ~6-10%8sec™? g2 ~ 8eVA and V; ~ leVA we find that M, ~9mg (my is
electron mass) and frequencies:

Woam = Ep — Epp ~ 10% — 10%cm™ 1.
For the reflection coeflicient we obtain:
R~ 1076, (15)

The coefficient R has been calculated for the thermal wavevector at 7'= 300 K.
From (15) we see that the solitons can put very essential contribution into the
conductivity of the system, and the transitions between bound states of the soliton
can put a contribution into the infrared absorbtion coefficient.

We are very gratefull to S.A.Brazovskii for the discussion.
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