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The nonlinear equations which describe the long wavelength, weakly dispersive
kink oscillations propagating along a magnetic flux tube are derived. The character
of nonlinearity appeared to be a cubic one with the coeflicients which reflect the
influence of a magnetic free environment on a transverse oscillations of flux tube.

In recent years the features of magnetic flux tubes are extensively studied
because of their dominant role in dynamics of solar atmosphere: according the
observational data magnetic field at solar surface occurs not in a diffuse form
but it is concentrated in thin intense magnetic flux bundles embedded in almost
nonmagnetized plasma. Usually magnetic flux tubes are isolated and far removed
from each other, covering 90% of solar atmosphere outside sunspots [1]. In sunspot
regions magnetic flux tubes form a dense conglomerate [2]. The structured magnetic
field is often met zlso in laboratory plasma as well as in other astrophysical objects.

The interaction of magnetic flux tubes with the surrounding plasma results in
the excitation of the different kind of oscillations propagating along flux tubes [3].
Among them the most important one is a kink oscillation corresponding to the
dipole mode with the azimuthal wave number m = +1 and a phase velocity
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Here p; and p. are plasma densities inside and outside flux tube, and B is a
magnetic field strength. For the time being the linear oscillations of flux tube
are well understood, and are available elsewhere ([3], see also [4] and References
therzin).

In the present paper we derive the equations which govern the propagation of
weakly nonlinear long wavelength kink mode propagating along magnetic flux tube
surrounded by nonmagnetized plasma. We adopt the model of a cylindrical flux
tube of radius R, which assumed to be much less than the wavelength X =k~ 1:

(1)

kR < 1. (2)

The discussion is based on the ideal MHD equations which are written here for
convenience:
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The above set should be completed by the equation of a pressure balance in an
equilibrium state of flux tube:

B’(r)
8

pi("') + = Pe- (5)
Here p; and p, are gas kinetic pressures inside and outside magnetic flux tube.
For simplicity we assume that plasma inside flux tube is cold, p; < p., and,
respectively, neglect the gas-kinetic pressure inside flux tube. This assumption
is not principal but allows us to make algebra not so long. The set (3), (4)
describes the motions both inside flux tube and outside it (where this set becomes
pure hydrodynamic one). At the surface of flux tube the boundary conditions of
continuity of the normal component of velocity,

Uri lr:R= Vre |T:R ‘ (6)

and the normal component of the momentum flux,

n

pi + —87 Ir:R= De Ir:R l (7)
should be satisfied. We choose the cylindrical coordinate system with the z-axis
directed along magnetic field. '

According the linear theory developed in [3] for perturbations, proportional to
exp(—iwt + imyp + tkz), the MHD set is reduced to a single equation for function
v inside flux tube

18 oy w? 1

S 4 Z k2 = 8

- or or +[vi T2]¢ 0 (®)
and to a single equation for the velocity potential v =-—Vx outside it:

18 68y w? 1

-——r= — -k - —|x=0. 9
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Here vy is the Alfven velocity and cs =, /I‘f’- is the sound speed outside flux tube.

The velocity and magnetic field perturbations are expressed through the function
¥ as follows:

oY 18y
=2 =__2%  4,=0, 10
Y ar Ve r dp v =0 (10)
kB 8¢ im kB wB k203
b, = ——, =—_—"9, b;=-— - . 11
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Respectively, the pressure perturbation outside flux tube is as
8pe = —t(w — ku)pex- (12)

Inside the flux tube the solution is proportional to the first order (m =1) Bessel

2 2,2
function: ¥ = AJy(q:r) with ¢Z = “’—:}-’;—"4 In outer region the solution of (9)
A

should have a form of a divergent wave: x =D’H(11)(qer), where M is a Hankel

2 2 2
2 = wi-kc,,.
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The linearized boundary conditions (6), (7) lead to the following dispersion

relation:
w? - Iczvf4 8lnx _ dlnvy

w? or or
where we use the denotation 7 = % In the long wavelength limit (2) the

(13)

n

expression (13) is a subject of expansion in powers of a small parameter (kR).
The first term in this expansion gives the phase velocity of a kink mode (1).
Retaining the next order terms we obtain the following dispersion relation:

w = ck + Bk + iu; (14)
where ) . o )
. cR mcR4 ¢ —¢
B g, wm T I (15)
8(1 +n) 4 (1 +n)c

Here the second term describes a weak dispersion of a kink mode, and the
third term corresponds to the effect of radiative damping of flux tube oscillations
described in [3]: according this effect the oscillating flux tube gives off its energy
through the radiation of a secondary acoustic waves.

To find out the character of nonlinearity of a kink mode note, that the first
nonlinear term that can have an effect on the finite amplitude kink oscillations is
a cubic one. As the azimuthal dependence of the quadratic nonlinearity contains
only the terms with m =0 and m =2, Taking this fact into account and being
consistent with the dispersion relation (14), we introduce the following stretched
variables:

C=¢e(z—ct), T=¢€t (16)

To carry out the adequate perturbation expansion of the MHD equations we
represent the velocity and magnetic fleld having power series expansion in € as
follows:

vi=ePvi + vy 4o,

v, =e€vy, + €vgs + o,
B, =¢?B, + 2B, +---, (17)
B, =Bo+¢*By, + /By, + -+,
pP=po-+epr+ oyt

Outside flux tube we have, respectively,

Voo =€ v 4+ vy 4o e,
Ver = 63/Z'l)tzlz + 65/21)821 +-- (18)
Pe = Peo+ €/ 2per + € Ppez + -+,

Pe = peo + 63/29e1 = 65/2/182 + ...

where v; and B, are the transverse (r and ¢) components of velocity and
magnetic field. The expansions (17) and (18) give the correct description of a
linear stage of flux tube oscillations and are consistent with the main features of
weakly dispersive long wavelength transverse oscillations of flux tube embedded in
nonmagnetic region. It is important to note that in this Lmit the above choice
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allows to specify the character of nonlinearity separately from the (weak) dispersion
which, in this limit, has a form obtained from linear analyze. Substituting (17)
and (18) in the MHD set, and equiting terms of each order in ¢, we obtain a
sequence of equations up to the desired-order. First at the order of €3/2 we have

from (3), (4):

8vu Bo Bo 3B1J_
- =—-—-V,B, +— , 19
cpo ¢ 4 + 4 & (19)
0By _  Oviy
—c ac By 3¢ (20)
and for outer region:
dv.
—CPeo0 ";Cu =-V.ipy, (21)
pL=cip (22)
From (20) we have
B
B;, = _TOVLL- (23)
Substituting By, from (23) into (19) we have
BE \ dviy Bo By,
- =0 =_v, == 24
( cpo+4ﬂ_c> a¢ L - (24)

One can see from (24) that vy, and respectively, B1, can be expressed through
some function % exactly in the same way as above (cf. Egs. (10), (11)). That
is:

B Bovi —c% 9
vii=-Vi¢, Bj1= TOV.L% B;. = *C*O sz a—? (25)
A
Using the boundary conditions (0), (7) yelds:
BZ\ ov ov
(T—cpo + ﬁ) 32* = —cpeo —5%# (26)

This expression coincides with those obtained in [3] for the linear oscillations of
flux tube and gives the phase velocity as (1). The validity of (26) can be readily
shown by the integrating of the r-component of Eq.(24) over r in a whole space.
Indeed, lets us represent 1 and x functions as follows:

b= AX()EVE (1), x = DX(r)é (2, 1). 7

Integrating the r-component of Eq. (24) in a whole space with the help of (27)

we have
dr = e —Z; 9t or

R
aX;(r) ag,
/(—CP +4—;)A ar d —  aC 6 7
0 0
(28)

Continuity of the momentum flux eliminates r.h.s. of Eq. (28), and a continuity
of the normal component of velocity leads streightforward to Eq. (26).

8X Bée é) By Bs, 3P1e
dr.
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Next, at the order of ¢ we have from the second equation of (4) and from
the z-component of (3) we have, respectively,
Po c* B?
P1= —Viz, PoCVI, T —7# (29)
¢ vy 87

Here we used relationships (25), and their consequence in a form:

A—CzaBll

V.B
LDy, = ’Ui 8(

(30)

Now, at the order of ¢%/? transverse components of equations (3) and the first
equation of (4) give:

3v2_|_ BO BgJ_ B() 3v1_|_ 6’0 Bvu_
PO T dx e t ViB2: =—po 3. TP ac — pov 50 (31)
and,
BZ_J_ avu (9BL|_ 8
B = —(v1:B11)- 32
CaC + Do a¢ 3y +8C(v1 11.) (32)

In outer region at this order we have:

Ovezl OVerl  Pel

—CPeo 3¢ ~+ Vip2 = —peo—p— a7 3 Vivi, (33)
Ove1s dp1
- = 34
CPe0 ac BC ( )
or, taking into account that p; =cZp.;, instead of (34) we have
CPeOVelr = pelcz- (35)
Combining equations (33) and (35), and taking into account that
_. €Pe0 Oveil
V pe
pu = L2 2 (36)
we can rewrite Eq. (33) as follows:
0vea) PerVy Overl | ©Peo Overl
—cp. \v4 el V=, i v el 7
CPe0 ac +Vi{pz2+ 5 Pe0 5 + > Verl —3 ac (37)

Matching now the equations (31) and (37) through the boundary conditions we
obtain:

Bvu B() BBM

+ 20 BVu Ped o Ovyiy
¢ 4z 8¢

FEa A Vi v

c(pio + peo) = c(pio + peo)—= (38)

Eliminating a second order terms from Egs. (38) and (32) we obtain streightfor-

ward nonlinear equations with respect to stretched variables:

8B, C 3 ( Bii) c? CPeO BL_ 0B
or onvA ¢ Bi(pio + peo) 2 OC

2 (39)
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It is convenient to introduce instead of the transverse components B the complex
magnitude H = B, — iB, and normalize it by the unperturbed magnetic field Bo.
Then, finally, the nonlinear equation for a kink mode has a form:

3H c 8 e 23H

43<(|HI H) - 4(1+17)Cf| I o =0. (40)
The equation (40) apart the last term is similar to those obtained for hydromag-
netic waves parallel to the magnetic field in a cold plasma [6,7). We would like
to emphasize that unlike the case of an unbounded plasma considered in [6] and
[7] here we deal with oscillating magnetic string interacting with the nonmagnetic
surroundings. The influence of a magnetic free region is provided by the last
term of Eq. (40) as well as is reflected in the propagation speed of a kink mode
(cf.(1)) which contains the plasma density outside flux tube. The equation (40)
should be completed by the dispersion and radiative damping terms obtained in
a linear analyze. With the help the dispersion relation (14) a standard procedure
gives the equation describing the evolution of a weakly nonlinear and weakly dis-
persive oscillations of magnetic flux tube corresponding to dipole (kink) mode, and
contains the condition when oscillating flux tube can radiate secondary acoustic
waves:

3 3 T 43
2 c dH 0°H ﬁ_./aH ds -0 (41)

2
i e 1P T 3 (s
-0

with 8 and p given by expressions (15). The effect of radiative damping is very
important when studying the dynamics of flux tube in a presence of shear mass
flows along the magnetic field [4]. In this case as it was shown in [4] along
magnetic flux tube negative energy waves (NEW) can be excited. According the
main feature of NEW consisting in growing their amplitudes due to the any kind
of dissipation, the radiative damping provides the development of strong instability
in those region where NEW can be excited. In the next paper of a present series
[8], we derive the evolution equation similar to those obtained above in a presence
of shear mass flow along the magnetic flux tube, and show that depending on the
parameters of flux tube and surrounding plasma nonlinear equation of the type of
(41) with a source of energy as a shear flow leads to vigorous nonlinear dynamics
of flux tube, such as appearance of a solitons with explosively growing amplitudes.
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