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For a quasi-ID disordered system of finite length L (a thick wire or a random
banded matrix) we found the explicit form of the distribution of the quantity
r = [$(0)(L)2, with ¢(0) and (L) being the values of an eigenfunction at the
opposite ends of the sample. For a long sample the quantity —Inr is shown to
have a normal distribution with a variance being twice as large as the mean. The
latter determines the smallest Lyapunov exponent (inverse localization length).

It has been known for a long time that the logarithm of the resistance of a
long 1D chain with a white-noise random potential is distributed asymptotically
according the Gaussian law [l]. Even for a chain of finite length L it has turned
out to be possible to derive an explicit analytical expression for the resistance
distribution [2]. In contrast, the more realistic case of the disordered wire (i.e.,
a quasi-1D system with a large number of transverse channels A o k%S, S being
the cross section of the wire and kp being the Fermi wavenumber) appeared to
be much harder to study analytically. The case of an asymptotically long wire
was addressed in the papers[3, 4]. It was shown that the average density-density
correlation function (and consequently the conductance} decreases exponentially; a
corresponding decay rate was calculated [3]. This decay length ¢ was found to
be parametrically large £ o« Al 3> | as compared to the mean free path I, in
contrast to the strictly 1D case, where the condition £ ~ [ always holds, and
the efore there is no room for the diffusive regime | « L « £. However, the
deniity-density correlation function (in contrast to its logarithm) is not a self-
averaging quantity, so that the mean value gives no relevant information, and
the whole distribution function is to be studied. This question was considered
in [4], where the distribution of conductance of a long wire was proven to have
asymptotically a log-normal form. However, parameters of this distribution were
not explicitly calculated. An intensive numerical work performed in this direction
(see recent review [5]) confirmed the normal form of the distribution of logarithm
of conductance, and the variance/mean ratio was found to be the same as for the
strictly 1D system with a white noise potential, i.c., equal to 2. In the opposite
case of a small particle (that is equivalent te a wire with L €« ) the conductance
distribution was calculated in [6] for a case of weakly coupled point-like contacts.
As to the case of the system of an arbitrary length, only the first two moments
of the conductance distribution were calculated very recently [7] for the case of
perfzctly coupled leads.
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Recently, interest in the statistical properties of quasi-1D systems was strongly
stimulated by progress in the domain of “quantum chaos.” In particular, it was
discovered that quite generally the chaotic classical diffusion in the phase space
can be suppressed by quantum interference effects. The most popular system for
the investigation of this phenomenon, known as the “dynamical localization,” is
the so-called quantum kicked rotator (QKR) model [8]. The evolution operator
U for the QKR that determines the dynamics of the system appears to have,
in an appropriate basis, the structure of a (pseudo) “random banded matrix”
(RBM) whose nonzero elements are concentrated in a band of width 5> 1 around
the main diagonal. This observation gave a boost to a numerical study of such
matrices (see references in [9,10]).

Quite soon it was realized that all statistical properties of the RBM can be
related to those of the thick wire in a simple way [9]. On a formal level
the RBM modtl can be mapped onto the same 1D nonlinear supermatrix o—
model that was introduced in [3] for the disordered wire. Further study in the
framework of this model revealed that it is possible to extract some important
physical information for a system (a wire or RBM) of finite size; the distributions
of the eigenfunction components, of the inverse participation ratios and of the
local density of states were mentioned as particular examples [10].

In the present paper we are going to study the statistics of the following
quantity: »

ra(L) = [$a(0)9a (L)1, (1)
where 1, stands for an eigenfunction corresponding to the energy level E, and
satisfying the Schrdinger equation Hyq = Eqte. The Hamiltonian H can be
thought of as that of a thick disordered isolated wire; indices 0 (L) correspond
to an arbitrary point situated at a distance shorter than the mean free path
from the left (right) end of the sample. Equivalently, we can start from the 1D
tight-binding model with L sites and the Hamiltonian belonging to the class of
RBMs with a wide band, 4> 1, and a matrix size L > b. In this case 0 (I)
just means a site situated at a distance of the order of b or less from the left
(right) end of the system.

The quantity r, contains the essential information about the spatial structure
of the eigenfunctions. In particular, L~'Inr(L) determines at I > ¢ the rate
of exponential decay of localized eigenfunctions (the smallest LE). The related
quantity f =) 7, determines probability for a quantum particle placed initially
at the left edge to be found after infinite time at the right edge. A quantity of
this sort was studied in [11]in the context of the dynamical localization.

The moments ri = (rE(L))g, k=1,2,... (the bar and the angular brackets stand
for, respectively, the disorder averaging and spectiral averaging in a narrow energy
window around the energy E), can be expressed in terms of Green functions
G(z,z',E)=(E - H)_], as follows:

(k=1
(2k - 2)!

Tk

(2xpL)! lix%)(217)2k'le(0, 0, E + in)G*(L, L, E — in), (2)
=+

with p being the 1D density of states. In order to calculate thc disorder average
1) we employ a supersymmetric method [3,10). In contrast to the strictly 1D

'} Correlators similar to that in Eq. (2) were recently calculated in [12] for the strictly 1D -
‘case and a white noise potential. The author, however, did not use them for the purpose we do.
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case the statistical properties of the disordered wire are dependent on the presence
or absence of time-reversal symmetry (TRS). The case of broken TRS physically
corresponds to a wire subjected to a strong magnetic field. The Hamiltonian
of the system in this case can be represented by a Hermitean random matrix,
whereas when the TRS is unbroken it belongs to the class of symmetric random
matrices. Performing the calculation we find correspondingly

_ 1 1 Ag
™8T 4x2LS (248)*1 (2 - 2)

o0
' / dvvsinh v | T(k—1/2+iv/2) |* exp{-—-(l+u2)8£‘;},
'Jo :

. A3)
where the coefficient is Ay = k!? for the case of broken TRS and Aj = (2k — 1)1
otherwise, and T'(z) stands for the gamma-function. The parameter v entering
this equation has the dimensionality of a length and contains all the microscopic
information about the disorder. More precisely, v = swpD/2, where D is a
classical diffusion constant, and s=1(2) for the case of unbroken (broken) TRS.
It is readily seen from Eq. (3) that all moments r; decay asymptotically like
e o< exp(—L/8v), and so the localization length { is proportional to . Let us
mention that for the RBM case we have S =1 and the parameter 7 « b > 1
[9]. Equation (3) is valid provided L > 1 (L > 1) for the RBM (thick wire)
case, respectively, the relation between L and v being arbitrary.

Having at our disposal all moments rx we are able to reconstruct the whole
probability distribution of the dimensionless quantity mg = 44282%r,. After some
manipulations we obtain

P(m) = 1‘8#/0 dvvsinh 7rz/e’(1+"z)x/4./(; dtt =3 Ko(t) K (t) R(m, t), 4)

where R(m,t) = 4t~'Ko(4m'/?/t) when TRS is broken and R(m,t) =
7~ 1m~Y2Ko(2m1/2 [t) otherwise. Here K ,(t) stands for the Macdonald function,
and we have introduced the scaled length of the system z =L/2y.

Expression (4) constitutes the main result of the present paper and describes
the probability distribution of the quantity r, for any relation between the system
size L and the localization length & o< +.

For the case of short samples. (the diffusive regime), vl <z <k, one can .

extract from Eq. (4) the distribution for the quantity go =L?S%*rq =2’mq :

2Ko(2./9) , broken TRS,
Ple)=¢ _1 (5)
;_gKO(\/SD ) unbroken TRS.

These expressions have a transparent physical meaning: the values of the eigen-
function at points separated by a distance exceeding the mean free path are
independent random variables whose distribution is equal to P(y) = exp(—y) for
broken TRS and P(y) = (2ry)~/2 exp(—y/2) for conserved TRS [6,10], y being
equal to LS|¥|?, ie., the same as the distribution of eigenfunction components in
Gaussian ensembles.

In the opposite case of a very long wire .(or a very large RBM), z > 1, the
typical values of m are exponentially small. In the domain z=—lnm>1, z> 1,
z/z ~ 1 one can notice that the integral over ¢t in Eq. (4) is dominated by the
region t < 1. Knowing that K, (t < 1) = %[I‘(iv)t"‘"+I‘(——iu)t‘"], one can calculate
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this integral, using z > | to perform the remaining integration by the steepest
descent method. This results in the following expression:

P(z) = C(z/:c)——l— exp{—ﬂ} (6)
2xl/221/2 4z '

where C(u) =ul'?(35%)/T'(u) for broken TRS and C(u)=wx"'ul'*(1 — u/2)/T(u) in
the opposite case. We see that this probability distribution has asymptotically the
form of the Gaussian distribution with the mean value Z =z and the variance
(z —Z)®2 =2z. The rate of the decay of all positive moments is four times smaller
than Z [see Eq. (3)]; i.e., again, this ratio is the same as for strictly 1D model
with the white noise potential, but is different from the corresponding ratio for
the Lloyd model[13]. These results are in good correspondence with the numerical
data for both long quasi-1D systems [5] and the QKR model [11]
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