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Superconformal Schottky groups appropriate for the description of all the
superstring spinor structures are built.

In the Neveu-Schwarz-Ramond [1] superstring theory the multiloop amplitudes
are written usually [2,3,4] as sums over spin structures integrated over Riemann
moduli. This form of the above amplitudes arises after the integrating over odd
moduli that are performed in the accordance with the prescription given in {2,3].
However, in the above scheme [2,3,4] the multiloop amplitudes turn out to be
depended on a choice of basis of the gravitino zero modes [2,4]. It means that
the two-dimensional supersymmetry is lost in the scheme discussed. Indeed, in the
superstring theory both the ”vierbein” and the gravitino field are the gauge fields.
Owing to the gauge invariance the ”true” superstring amplitudes are independent
of a choice of a gauge of the above gauge fields. Therefore, they have no
dependence on a choice of basis of the gravitino zero modes.

The discussed dependence on a choice of basis of the gravitino zero modes
appears to be a serious difficulty in the considered scheme. The above difficulty is
absent in the formulation [5] possessing of the manifest two-dimensional supersym-
metry. In this scheme the n-loop superstring amplitudes A4, turn out to be [6,7,8]
the integral over (3n - 3|2n —2) complex moduli gy and their complex conjugated
qn, as well:
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where Zhgg, are the partition functions and < V >y 1+ denote the vacuum expec-
tations of the vertex products. The index L (L') labels ”superspin” structures
of right (left) fields. The above superspin structures are defined for superfields
living on the complex (1|l1) supermanifolds [5]. Being twisted about (A4, B)-cycles,
the superfields are changed by mappings that present superconformal versions of
fractional linear transformations. Generally, every considered mapping depends on
(3]2) parameters [5]. For odd parameters to be arbitrary, the above mappings
include, in addition, fermion-boson mixing. It differs the superspin structures from
the ordinary spin ones. Indeed, the ordinary spin structures imply that boson fields
are single-valued on Riemann surfaces and that under. 2r-twists about (A, B)-cycles
fermion fields can be multiplied by (-1). For all odd parameters to be equal to
zero every genus-n superspin structure L= (l1,l;) is reduced to the ordinary (Ii,l2)
spin one. Here l; and Il; are the theta function characteristics: I = {l;;} where
1;;,=0,1/2 with i=1 or 2 and s=1,2,..n.

In the discussed scheme the partition functions can be computed from equations
[7,8] that are non other than Ward identities. These equations realize the
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requirement that the superstring amplitudes are independent of both the ”vierbein”
and the gravitino field. Therefore, the multiloop amplitudes being calculated in the
terms of the superspin structures turn out to be consistent with the requirement
of the gauge invariance of the superstring.

In above refs. [3,6,7,8] only superspin structures with all l;, to be equal to
zero were studied. For the description of these superspin structures superconformal
versions of the Schottky groups [9,10] have been employed. The goal of this paper
is to build the superconformal Schottky groups appropriate for all the superspin
structures including those where !, ¥ 0. In this formulation the superfields
associated with the above superspin structures turn out to be branched on the
complex z-plane where Riemann surfaces are mapped. It makes to be rather
difficult the calculations for the superspin structures in question. Nevertheless, it
is the only formulation allowing to perform the explicit calculation in the terms
of even and odd moduli of both the partition functions and the vacuum superfield
correlators. So the discussed formulation seems to be interesting.

Generally, every superspin structure given on a genus-n complex (1]1) super-
manifold is defined by the transformations (T's(l1,), s s(!2,)) that are associated
with rounds about (A,, B,)-cycles, r1espectively. The above supermanifolds are
mapped by the supercoordinate t = (z}]§) where z is a local complex coordinate
and 6 is its odd partner.

To build all the Iy ,(l1,),Tss(l2,) mappings one can note that for genus n=1
there are no odd moduli. Indeed, the genus-1 amplitudes are obtained in the
terms of ordinary spin structures [l1]. Then, for every particular s, all the odd
parameters in both T'y,(l;,) and Ty ,(l;,) can be reduced to zero by a suitable
transformation I-‘,, which is the same for both the above transformations:
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where (I‘((,?Z(ll,),f‘g:)(lz,)) are equal to ([g,(l1,), s s(l2:)) calculated at all the odd
moduli to be equal to zero.

For the I‘g?’)(lz,) mappings we employ Schottky transformations. Simultaneously
the 6 spinor receives the (c,z + d,)~! factor. Moreover, for I, =0, the spinors
receive the sign [3]. Therefore, '

T8 (1) = {z = (as2 + by)(caz + di) 1,8 — —B(=1)22(c,z + d, )1} 3)
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where (a,,b,,c,,d,) are complex parameters and a,d, — b,c, = 1. The discussed

I'y s(las) present superconformal versions of the above Fgos)(lg,) transformations.
We take I'y ,(l2, =1/2) to be the same as in [3,6,7,8]:

‘ as(z + Be,) + b, 8+ ¢,
Tpa(la, =1 2) = _ —_——
bs (12 /2) {z cs(z + ey ) + d, —_’c,(z+853)+d3}
with ¢, =a,(c,z +d,) + Bs, a,d, — b,e, =1 —¢,8,¢, . (4)

In (4) the even (a,,b,,¢,,d,) and odd (a,,f,) parameters can be expressed [3,8] in
the terms of two fixed points (u,|u,) and(v,|v,) on the complex (1|1} supermanifold
together with the multiplier k, as

u— kv — Vv =ku-—v—\/E;w 1—-k

\/‘E(u—v——/w)’ \/Iz(u—“u—;w)’ c_\/z(u’—v——;w)’
a=(u+ Ve )(1+vE)Y B=—(v+VEp)(1+VE), 3)



the index s being omitted. To obtain the above T ,(l2, =1/2) mappings in the
form (4) we choose the I', mapping in (2) as

Tv: 2oz, 40,6(2), 0—6,(1+&8/2)+E(2);
£ = 0,£,(z), Es(2) = [e(z — vs) — vs(z — uy](u, — v,)" L (6)

Furthermore, we choose (3|2) of the (u,,v,,is,v,) parameters to be the same
for all the genus-n supermanifolds, the rest of them together with the k, multipliers
being (3n — 3{2n — 2) complex moduli gy in (1). One can think that |k,| < 1.
Also, for the isomorphism between (4) and (5) to be, we fix the branch of Vk,,
for example, as |argks| < w. Then T ,(l;, =0) is obtained from (4) and (5) by
the argk, — argk, + 27 replacement. The discussed Ty ,(lo, = 0) appear to be
slightly different from those in [3,6]. .

In fact, the above argk, -— argk, + 27 replacement presents the (super)modular
transformation turning (ly, = 0,0, = 1/2) inte (I, = 0,13, = 0).To prove this
statement it is sufficient to check it for the genus n = 1. For n =1 the
period w is given by [3,10] w = (27i)"'Ink. So, we see that w is turned into
w + ! under the replacement discussed. Employing the explicit form of the theta
functions, one can verify that this transformation of w is accompanied by the
replacement ({; = 0,1, = 1/2) — (I = 0,l; = 0). Therefore, in our scheme the
|arg k,| < 7w condition provides in eq.(l) the separating of the (I3, =0,l, =1/2)
and (l;, =0,!2, =0) superspin structures from each other.

Every mapping (3) turns the circle ¢ = {z : e,z + d,| = 1} into cl) = {z:
| -c,z+a,]=1}. The round about the ¢! or ¢! circle corresponds to 2r-twist
about A,-cycle. For I, =1/2 the spinors receive the sign under the above round
[3]. Then the I'y,(l1, =1/2) mappings appear to be

I‘a,s(lls = 1/2) = {Z — 2z - 295,(2), 9 - "0(1 + 2~ ~,) + 255(2)} (7)

where £, is defined by eq.(6). So in this case the cut €, appears on the
considered z-plane. As far as T, ,(l;, =1/2)? =1, its endcut points are the square
root branched ones. One of them is placed inside the C‘,(') circle and the other
is placed inside C§+). .
Superconformal p-tensors F,(t) being considered, I's,(l1, = 1/2) relate Fy(t)
with its value F,S’)(t) obtained from F,(t) by 2m-twist about C,(—) or C,(+)-circle.
So, Fp(t) changes under the Tq,{l1,)={t — 13} and Ty, ={t — t*} mappings as

Fy(t5) = FO0QE, (1), F(t) = FR(H)E, (1) . (8)

For l;, #0 the above F,(t) can not be obtained by a simple supersymmetrization
of the conformal p-tensors in the boson string theory. The construction of the
above superconformal p-tensors will be consider in an another paper.
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