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We consider current carrying states in a onec dimensional system of interacting
electrons. The new exact results for the Hubbard model and for the bosonization
method are exploited. We find that away from half filling both spin and charge
excitations carry currents which are proportional to their momenta for most cases.
Being in a qualitative agreement with a single particle picture of the noninteracting
1d Fermi gas this result contradicts to the spin-charge separation concept as it is
usually derived e.g. from the bosonization approach or in a strong repulsion pictures.
The paradox is resolved by taking into account the spectrum parabolicity and
reexaming the structure of the current operator within the bosonization approach.

It is commonly accepted that in repulsive one dimensional Fermi liquids (see
[1, 2] for a reviews) spin and charge are "deconfined”. Elementary excitations
are spinons (that carry spin and no charge) and holons (that carry charge and
no spin) [3]. A hole in the Fermi sea is supposed to split spontaneously into
a spinon-holon pair, while a spin flip triplet excitations decays into two spinons
Such a deconfinement is apparent in at least two limits :

-Weak coupling, in which the problem may be bosonized {4, 5]. The spectrum
close to the Fermi level is assumed to be linear. Spin and charge fluctuations
propagate at different velocities and an initially localized perturbation splits.

-Strong coupling Hubbard model, which in leading order leads to spinless free
fermions, with a residual Heisenberg interaction between spins (disregarding holes).
Spinons appear as Bloch walls in the underlying local antiferromagnetic order,
while holons are holes that do not disrupt the spin alternation along the lattice.
The problem can be solved exactly in the Hubbard model using Bethe Ansatz
solutions, for arbitrary interaction strength U and band filling p [3, 6-8]. Such an
analysis confirms the existence of spinons and holons. The corresponding spectra
e,(g) and en(q) ‘are known, as well as the allowed ranges of g.

In practice, spin-charge deconfinement raises a number of problems, even in I1d.
In the weak coupling limit, for instance, the spinon and holon spectra are found
to be

{q) = 4t(cos q/2 —~ cos k), jgi<m, (n

€,(q) = 2t(cos g — cos kp), [ql< kp. (2)

It is straightforward to construct the continuum of hole states e(p) =¢,{(q)+en(p—q)
and to look for iis lower bound £,,,. One finds that the free hole energy:
e=2Lco8D < Emin(p). Thus the hole appears as a bound state of the spinon-holon
pair! Very close to the Fermi level the two energies become equal, and the hole is
indeed at the botiom of the continuum - hence there is a marginal deconfinement.
This is not true away from Fermi level. (Marginal deconfinement actually occurs
into holons and several spinoms). Such a bound state may disappear for larger U:
it is not obvious!
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Even if spin and charge are really deconfined, the issue arises of the currents
associated to each of these excitations. Within a bosonization approximation [4,
5] the answer is simple: a spin excitation carries no charge current whatsoever
(decoupling is complete). Reasonable as it may look, this is actually wrong - for
reasons that are rather fundamental. Once again, that conclusion is obvious in
two limits that shed light on the underlying physics;

- In a free Fermi gas (U =0), the elementary spin excitation is a spin flip
(implying two spinons) in which a particle k 1 below Fermi level is shipped to
(k+q) | above. The corresponding charge cnrrent is clearly

J = Vegg — Uk (3)

where v = 8¢ /O0k is the group velocity. Spin does not matter, and current
is clearly related to the curvature of the spectrum OJvy/dk. The failure of the
bosonization methods in getting j is then obvious : one assumes a linear spectrum
with no curvature.

- In the opposite limit of strong coupling, U — oo, the Bethe Ansatz (BA)
solution simplifies considerably. It is expressed in terms of N, orbital momenta k;
and M spin rapidities A, that satisfy the set of equations [3]

M N
Nokj = 6(2sink; — 20g) =271; = Nagj, j=1,...N, (4)
B=1

N M
D 6(2sink; —2a) + Y 0(Aa — Ag) =27Ja = Nopa, a=1,... M. (5)
7i=1 B=1
where 8(z) = —2arctan(2z/u),u=U/t, N =pN, is the number of particles, M is
the number of spins "down”, N, is the number of chain sites,{I;}, {J4} are sets
of integer or halfinteger values, U is the value of Hubbard onsite repulsion, ¢ is
the hope integral between the nearest sites.
The total energy, momentum and current are given as [3, 9]

E'=——2thosk,-, p=Zk,—=Zqi+Zpa, j-‘=2tZsink; (6)

In leading oxder in 1/U the rapidities are of order U. The above equations
(4,5) reduce to

ki=gi+ 8k, —NO(2\a)+ ¥ 0(ha — Ag) = Nups, (7
B

Each k; is shifted by a constant amount 6k =—(1/N,)3 6(2),)=

(I/N)3 pa= p,/N, where p, is the total momentum of spin excitations. (The cal-
culation is easily extended to first order in 1/U, thereby generating the Heisenberg
exchange). The total charge current is

Jj=Jo— Eops/Na, J0=2t25inqi| ./o=--2t2cosq¢. (8)

1 1

The presence of spin excitations thus generates a charge current proportionnal to
p,. Spin and charge are indeed decoupled, but the spin degrees of freedom modify
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the boundary conditions, thereby shifting momenta somewhat (they occupy part of
phase space) - hence a charge current.

These simple limits clearly demonstrate the existence of the effect and its
physical origin. The charge current associated to spin is due to the curvature of
the kinetic energy (to the dispersion in velocity). Within the Hubbard model that
curvature vanishes for half filling, in which case Ey =0: then the spin mediated
current is zero, as expected. The phyrsics is thus clear and consistent.

In practice one may be much more general using the full BA solution. The
rest of this note explores some of these genefalizations, as well as the physical
implications of that result.

The charge currents have been already evaluated explicitly for a strong interac-
tion limit [9]. Our recent studies for a week coupling limit and the calculations for
a finite magnetic flux have given more light and sharpened the above mentioned
contradiction. The following types of excitations have been considered: spin triplet
and singlet pairs, hole and particle states, added particles, gap states at half
filling history p=1. All detailes will be published elserwhere [10]. Here we will
concentrate mostly on spin triplet states.

Consider the Hubbard model for N = pN, particles on the ring of N, atoms
in the presence of a magnetic flux & trough it. The ground state and excitations
are described by the BA equations (4), (5), in which one should change [11, 12]
Nykj — No(k; — v), leaving sink; unchanged. There v = (2n/N,)(®/%0), ®0 = hc/e
is the unit magnetic flux.

Spin excitations were studied basically in [7, 8, 13, 14]. Similarly to the 1d
Heisenberg model, elementary spin excitations of the ld Hubbard model are spin
doublets (s =1/2), their number being even. Two spinons can form a spin singlet
or a spin triplet excitation.

Exited states are conveniently described [9] by the function j(k;) = Nypo(k;)ék;,
po(k;) = 1/(Na(k9,; — k7)), where po is a known function for the ground state (3],
6k; is the shift of a wave number k; — v due to the excitation.

For the spin triplet excitation the function A(k) = f(sink) obeys the following
equation

sin Q
ft)y=v/»+ E 1/x arctan(exp 2x(t — A;)/u) +/ fEOK(@E -¢)dt'  (9)
i=1,2 — 8in Q
where K is the standard BA kernel: the Fourier transform of [exp(jw|u/2) + 1]72,
[~Q, Q] is the interval of k;- distribution for the ground state [3]. The momentum,
the energy and the current of excitations are expressed [9] in terms of p(k) as:

Q+v Q+v Q+v
p==/ p(k)d 6—2/ p(k) sin kdk ]—2/ p(k)coskdk.  (10)
-Q+v Q+v Q+V

Alternatively the current can be obtained as j = —Ngbe/6®. There are two
modifications due to the magnetic field: the new term v/x in (9) and the shifts
of integration limits in (10).

All values are 2r - periodic functions of ®/®;. To find a contribution of a
single excitation we must consider & as intensive variable, in a mesoscopical sense,
so that v~ 1/N,. In first two orders in /%y we find at u>> 1
sinmp , sin 7p

viNa+2p =, (11)

€=v, |p, | +2
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7 =—8(®/%®0)sin(7p) + 2p,sin(xp)/wp, p=ps+ 2np®/P,. (12)

Here p and p, are the momentum and its value at v =0 so that the variation
in v should be taken at given p, which is quantized by integral BA numbers.
The first term in (12) is the diamagnetic ground state contribution, the second
one is the paramagnetic orbital spin wave current. A more detailed information is
provided by direct calculations of currents at zero flux & =0.

The eigenvalues of a triplet excitations are decomposed additively to corre-
sponding values of the two spinons: p=p; +ps, € =€+ €2, j=j +Jj2. E.g.
at small u/sinmp << 1 we arrive at (1)-(3) with ¢ = mp/2 ~ p;, kp = 7p/2:
J(pi) = 2(sin(7p/2) — sin(rp/2 - p;)). At small momentum p « 1 we find for both
limits of weak and strong interactions the charge current of a spinon as

u<<l: j=2pcos(np/2); u>>1: j=2psinnp/(wp)

in accordance with (2), (3), (8). We have confirmed that at p # 1 spin triplet
waves carry the electric current proportional to the momentum.

The spin singlet states [8, 13] are described by an additional pair of complex
numbers Ag=A+iI' and after bulky calculations [10] we obtain the same equation
as the one (9) for the triplet case. Consequently the energy and the current
coincide for the singlet and for the triplet states.

The hole states are the gapless charge excitations [3, 7], they are determined
by a hole in the k—distribution. The equation for g(k) [10], the energy [7] and
the current [9] were found for u>> 1 . At the opposite limit u < 1 we find [10]
the same results as for triplet states. At large u results are different: for the hole
state the current is j =~ 2pcos(7wp/2) in compair to at u>> L.

States with one added particle are described by similar expression for the
energy and for the current at both limits » > 1 [9] and v <1 [10], (1), (3) as
e~ —2cosp, jasinp, |p|> Q. ‘

We conclude that not only charge excitations (hole and particle states, states
with added particles) but also spin states (spin triplet and singlet excitations)
carry the electric current j oc p at small p. Next we w1]l consider this problem in
the framework of the bosonization approach.

The bosonization procedure [4, 5] relies upon a decomposition of the Fermi
operator into right- and left- moving parts ¥, + and on the spectrum linearization
in the vicinity of +kr and on a conceptually inconsistent interpretation of a
two-parametric low energy cusp of particle-hole excitations (1), (2) as a single
spectrum of zero sound like bosons. One introduces the Bose field ¢, and the
conjugated momentum =, with an appropriate "momentum cutoff” regularization.
In these variables the Hamiltonian acquires a separable form H = H(yp)+ H(o)
where ¢ = (91 +¢,)/2 and o =(p1 —¢p;)/2 are the charge and the spin polarization
fields. For the forward scattering case (the Tomanaga - Luttinger model) or
asymptotically for the repulsive Hubbard model at p1 the Hamiltonians describe
the sounds

H(p) o« (8:9)* +72;  H(o) o (8:0)* + 2. (13)
The charge density n and current j operators are expressed as n ~ 8,9, j =
‘\Ilta,\Il x —7%, x —Otp, so that they contain the charge field operators only.

Consequently the eigenstates of the spin Hamiltonian H(o), would carry no current
and they would not interact with electric field.
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This common conclusion is in apparent disagreement with both exact results
for the Hubbard model and for the noninteracting limit as we have discussed
above. In order to resolve the discrepancy we will take into account the spectrum
curvature (the Fermi velocity dispersion) I' which should obviously mix the degrees
of freedom. = Then the Hamiltonian and the current acquire additional parts
H— H+6H, §H=-T¥10,%, T=a costp/2; j=j+6j. here the value T is
given for the Hubbard model. Finally we obtain

bn=0, §5= I’\IfT(—ié’x)‘I' ~ —T(9r97y + 8z07,), T'x coswp/2, (14)

6H ~ (Bxcp)s + 38, ¢ [(6,0)2 + 7r3, + 74'3] + 0m, 70,0, ‘ (15)

Remarkably the operator’s relations n ~ 8;¢ and j ~ —8;¢ are not effected,
but what is changed is the equation of motion 8 ~ 7, which is now destroyed
due to (135).

Consider now effects of these modifications.

a) Spin ezcitations currents. The lowest excitations (magnons) of the spin
Hamiltonian can be obtained by the quantization of H, at I'=0. It follows from

(13):

HﬁZIkIaIak, |@>=af 0>, <|jla>=Tk (16)
k

where az,ak are the creation and the annihilation magnon operators. So the
current value is proportional to the momentum, the ratio being independent of
the value of a weak interaction which is in agreement with exact results.

b) Charge ezcilations currents. For excitations of the charge Hamiltonian H(yp)
we find similarly to (16), unlike the spin case, the current operator has now two
contributions

<O 1Q>< |7, |Q>+T < Q| 7,09/0z [ Q> . (1

The first term in (17) vanishes due to nondiagonmality of w, so that the average
value of the current remains the same =~ I'k as for the spin excitation.

The mean value of < 7, > can become nonzero and the linear in boson
operators contribution will appear only for those states which are not the eigenstates
of the charge sound Hamiltonian. It happens at the macroscopic current carrying
ground state, the magnetic flux being a current controlling conjugated variable,
when the number of sounds bosons is not conserved due to the presence of the
term j® ~ ®r, in the Hamiltonian.

Conclusions. For the Hubbard model at arbitrary filling p both charge (hole
and particle) and spin (singlet and triplet) gapless excitations carry a current,
Jxp at p< 1. At the half filling p=1 only states with one added particle
are charged. Within the bosonization approach for a linearized bare electronic
spectrum neither spin nor charge sound excitations carry a current. The current
arises only for macroscopic coherent states, when the number of charge sound
bosons is not conserved, for example, at the presence of a magnetic flux. The
account of the spectrum parabolicity leads to nonzero currents (7 o< p) for both
charge and spin boson excitations, which is in agreement with exact results for
the Hubbard model as well as with a free fermion picture.
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An appearance of the spin wave charge current is both unexpected and
natural. Remarkably the spin waves the spectra and the whole BA construction
evolve gradually, unlike other excitations, from the Heisenberg chain equivalent at
p=1,u¥0 to arbitrary p. This is why it is tempting to consider them as spin
" waves even at the presence of holes, p1. At the same time for p¥ 1 there is
a continuous evolution of spin excitations towards u=0 when they should become
nothing but triplet electron-hole pairs. As such the triplet excitations will evidently
carry the current due to electron-hole nonsymmetry caused by the Fermi velocity
dispersion at p ¥ 1. The bosonization tends to ignore the feature as well as all
effects of sound decomposition into a band of doublets. When u is net small the
currents can not be interpreted anymore in terms of the spectrum curvature. The
BA solution provides us with a more general point of view: the distributions of
the holon quantum numbers are shifted at the presence of a spinon.
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