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Perturbation theory is formulated in the confining background'field B,. All
diagrams are gauge invariant end at large N. limit depend on B, only through the
"Wilson loops W(C, B,,). Assuming the arca law for the latter one obtains the charge
renormalization at large distances which yields behaviour a,(p) ~ 4r(ln Ei;‘;"—z}“
where m is a process-dependent mass of the order of 1GeV. Then for m > A
the asymptotic freedom persists for all Euclidean momenta and IR renormalons are

shown to disappear.

1. Perturbation expansion (PE) in the free vacuum of QCD is diverging at
large distances due to the ghost pole in the running coupling a,(p). In addition
sum of PE is not Borel summable due to the IR renormalons [1]. In this letter
we instead consider PE in the framework of the background field formalism [2 3],
splitting in the lagrangian L the total field A, into the nonperturbative {NP) part

B, and perturbation a,:

A, =B, +a,, L(A)=Lo(B)+ Y Li(B,a).

i=1

——
—
~—

Then the usual diagrammatic technic can be used for the expansion in powers
of ga,, with propagators of the quantum field, a,, G,.(z,y;B), depending on
the background field B,. We also use as in [3] the gauge fixing (gf) term
ﬁ(D,,(B)A,,)2 and the corresponding Faddeev - Popov ghosts. Prescribing gauge
transformations for a,,B, — V*(a,, B, — ;6,‘)1/ all physical amplitudes can be
written for large N, with the help of the Feynman-Schwinger representation {FSR)
7 through the average of a product of Wilson loops W{C;B) of the field 3,.
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‘Ne are in particular interested in the iarge distance behaviour of the new PE,
snd assume for < WO, B) > the area law exp(—oSmin), which follows naturally
‘rom the cluster exvansion [5] or lattice calculations [6]. Thus the large distances
sre described by © sne arut parameter — the string temsion o, which is used
w5 the only characterstics of the NP fields {B,}.

Our specific goat is i» calculate the running coupling a,(p) at all Euclidean
momenta p including the IR region p — 0. Two different NP definitions of the

vl

charge are used:
i) the energy of static charges at distance R

ﬁa,(R)

R)=Enp(R;B) — ) 2)
where E(R) is computed as
1
E(R)= —Tlim {fln <W(C,B+a)>} (3)

and the contour C is a rectangula: R x T

i) the extended method of [3], where the two-point functions with external B
lines have been calculated. In the lowest order for B =0 the charge Z factor, 7,
is given by a gluon a, loop and & ghost loop diagrams, yielding familar charge
renormalization.

In the full treatment for B =0 one considers a gauge-invariant generalization
of the same loop diagrams, where gluon and ghost Green’s functions are not free
but contain B, to all orders.

In the first definition 1) the case without background renormalization of the
Wilson loop was considered in {7] and the result for o,(R) can be obtained from
{8] taking the limit- of heavy quark masses:

as(R) = a, (u)(1 + os () fO(R) + ...) . (4)

The same diagrams as in the free vacuum case can be considered with the
confining background which reveals itself as the area law for the Wilson loop. In
this specific situation when the side length T of the Wilson loop tends to infinity
and N, is large, so that gluon lines are replaced by double fundamental lines, one
can show that the internal fundamental loops have the asymptotics [9] at large

lz—y|
< (z,y; B) >p~ ezp(—my |z —y |). (5)

The mass my is a mass of two charges connected by the string, like the mass of
p meson and can be computed through ¢ [10]. Typically [9,10] m; =~ (3—4)/o0 ~ 1
GeV. Using the asymptotics (§) in the computation of f(o)(R) one obtains instead
of 14)

Lmvymanm= [ Tomr lorom e Lo (
=/ (R)~I(R)_»/6 ~eT™M(ZO(R 1) + —O( - R)). (6)

At small R, I(R) has the familiar asymptotic freedom behaviour

1

I(R)zE

R



This coincides with f(°) upon renormalization %——»p.
For large R, m;R>> 1, the logarithmic growth of f(%)(R) is "screened” in {6):

From the Fourier transform of (2) one easily obtains

b . pP4m?
a,(p) = a{u)(l + a,(,m)é In -#—21- +

Similar results one obtains for the definition 1), where the contribution te
is calculated from the two-point function:
2

Houlz,y) = (4£;)2b°(‘9“3" — 0%, Mz, £10;

and the one-loop function II contains sum of contributions of the gluon ¢, and
ghost in the background B,, which can be computed using FSK [4,10! and the
proper-time Hamiltonian technic [9,10].

For us it is only important the asymptotics behavicur which can be f{ound by
mentioned above methods:

H{z,y) ~exp(-my |z —y |}, jz-yi- o0 L

-

Here the value of mjy is close to the two-gluon giuebali mass in the siaic
As was computed in [l1] m; is around 2 GeV. Using {ili one can compute
Z¢ to one loop approximation and a,(p} appears to be the same as i (& with
replacement m — m;. We note thet m; depends on the process, since the infrared
asymptotics of the renormalization gluon loop depends on the surroundings 1n the
diagram where it enters - the loop is attached by strings to the overali Wilson
contoui.

It is important that due to the gauge invariance of PE the renormalization of g
and B, are connected [3]: Z, =Z§1/2 and the product gB, is the rencrminvariant,
implying the same property for ¢ and m;,m;. Thus it is not surprising that m”
enters (9) on the same footing as the momentum p?. Moreover, the dependence
on the normalization mass (scale parameter) u is the same as in the irec case,
which means that Gell-Mann-Low equations do not change (at least to omne-loop
order}

dlng __bog” (12)
dlnp 1672

Solving (12) with the initial condition (9) one obtains a,{p} in the form with
the A parameter

47
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a,(p) =

Here A may differ from the usual QCD parameter, and coincides with it when
m — 0.



The form (13) goes over into the familiar one when p? >» m? and is universial
in this limit. However, for p? < mf the value of a,(p) is. not universal (i.e.
depends on the process where it enters) which is reflected by the nonuniversality
of m? in our two definitions.

In addition, we have systematically dropped in the process of derivation of (9},

(13} constant terms and powers of (u?/(p* + m?)), so that the result (9) is a
leading term for large In ﬂ;—t—’ﬁ > 1.

The estimate of a,(p=0) in (13) for m =1 GeV and A ~ 0.2 GeV, b =¢
yields a,{p=0)=0.43 and a,(p~ m,) ~ 0.38 in agreement with sum ruie estimaies
in {12]. Thus (13} gives a phenomenoiogically reasonabie behaviour whereby tii
asymptotic freedom persists up to small values of momentum.

Finally we turn to the renormalon problem [l]. Foliowing [13] we write iue
generalization of the contribution of the set of IR renormalon diagrams to ihs
Euclidean correlator II(Q?%) of e.m. currenis as

, bocr, (@) Q* 1.2 1.2 2
aQ}Z oaQ n!' kdkl,“Q—%nﬂ) (14;

823 5 04 k2 + m2 j
where we have used (13) and have taken the normalization point at Q2 + m*
Q%> m%? When m=0 (14) goes over into the familiar expression (see e.g. Eq.($:
of ref. [13]). The integration in /14) yieids

1 ad a (Q )bo
2y = et n -
AlQY 272 Zi &r Ve (13
n¥i
where
_ j/ in_nl):, n < ing .
qn 1 gzr:loz ‘ n> Ing (163

and ng = lr).gi',.“%'r'i > 1

In the limit m — G, ng — oo one obtains in (135) a factorially diverging seres,
with the Borel transform AIl(t) having a pole in the Borel parameter ¢ at 8 b,
- the so called IR renormalon [l] precluding the Borel summation of the series
(15). For finite values of m, however, the factorial growth of g, stops at n = 2ng
and the series (15) is summable by usual methods yielding asymptotically, no > i
the simple expression.

1 2y
o4 =~ _ i as(Q ,'.
A@Y) = -5 w0

(173

Thus the confining background drastically improves the properties of PE and
gives hopes that the perturbation theory of QCD can be managed at all distances.
For that NP background can be described by the lowest correlators < FF >,
< FFF >... or just by the string tension (at large distances), while from the .PE
one can keep only few lowest order terms.
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