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We obtain the variational upper bound for the ground-state energy of two-
dimensional antiferromagnetic Heisenberg model on a square lattice st arbitrary velue
of the anisotropy parameter using the two-dimensional generalization of Jordan-
Wigner transformation. Our result can be considered as an upper bound for the
perturbation: theory series about the Ising limit.

At present time twe dimensional quantum spin systems attract much atteniion in
connection with the probiem of high-T, superconductivity. For the antiferromagnetic
Heisenberg model at some values of the anisotropy parameter the existence of the
long-range order was proved (1], however the exact ground state is not known.
Apart from the linear spin wave theory [2] various methods to evalvate the ground
state energy for the Heisenberg amtiferromagnet were proposed. For instance the
perturbation theory and ihe cluster expansion about the Ising limit were used
[3]. However, although the convergence of the series of the perturbation theory is
good these estimaies are not the variational omes. At the same iime the energy
corresponding to any reasonable variational ground-siate wave function canmnot be
computed exartly {for example of these calculations see ref.[4l). Finally at present
time the accuracy of the numerical simelations [5] is not sufficiently high In this
context the variational estimates of the ground state energy for th: two-dimensional
aniiferromagnetic Heisenberg model are of interest.

In the present jetter we obtain the exact upper bound for the ground-state
energy of the s=1/2 quantum aniilerromagnet for arbitrary value of the anisotropy
parameter. Our variational estiimates ace sufficiently low and may be useful in
conneciion wiith the siudy of two-dimensional spin models in the framework of the
other methods.

QOur method s based on the transformation which change the statistics of
particles on a two-dimensional lattice. There are several ways to define the
Hamiltonian of particles obeying the fractional statistics {anyoas) on a lattice (for
example see ref[€]). We can use the most natural form of the definition of anyon
operators in ierns of the fermions

— - R .
bH{a) =al exp {—za S dam |, mma, (1)
T#4

where the operators !, a; obeys Fermi statistics and ¢y is the angle between the
direction from the site 7 to the site | and some fixed direction, z-axis for example.
In accordance with the multi-valuedness of the anyon wave functicn the operator
bj"(a) is multi-valued at arbitrary fractional value of the statistical parameter «a,
which describes in Eq.(]; the deviation from the Fermi statistics. In particular,
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at a=1 the operators (1) are the hard core boson operators, which commute at
different sites and behave like the fermions at the same site. Expressing the spin
operators (s=1/2) in terms of the Holstein~Primakoff bose operators

1

SH=08f, S =b, SI=blb— 7
we obtain the representation of spin operators in terms of the fermions which can
be thought of as a two dimensional generalization of the well known Jordan-Wigner
transformation for one dimension:

. i
S =a}texp| ~i E paru |, Si=ala; - 5-
1#i

The Hamiltonian of the Heisenberg antiferromagnet H =E<i]-> S;S; has a comph-
cated form

=—% > lafajexp|-i Y ¢,J,n,) the |+ ) (ni— %)(n,- - %), (2)

<iz> I#4,5 <>

where ¢;;1 = ¢ — ¢ and < ij > denotes the nearest neighbour sites. The minus
sign before the first term in Eq.(2) is due to the redefinition of the operators
a; — —a; ocn one of the sublattices of the square lattice. In order to simplify the
Hamiltonian one can make the substitution n; — #; in the exponential of Eq.(2},
where 7; is the average particle number at a given site, i=1/2 for the half filling
(5% =0}, which will be considered in the present paper. This procedure is usually
refered to as a (vector) mean field (MF) approximation. After this substitution
the MF Hamiltonian

Hyp = _% > (xiyafa; +he) +U Y (i = 5)(ny - 5), 3)

<tj> <ij>

where x;; = exp(—7 3, ¢ii7u), describes the system of fermions in the homogeneous
statistical magnetic field with the magnitude corresponding to the flux ¢ =
through the plajuette. The parameter 7 = 1 {or the isotropic model. Due to
the gauge invariance (a; — a, exp(f;)) the phases of y;; are depend on the gauge
fixing condition. The sum of the phases around ihe closed contour is fixed and
equal to the one-half flux quantum through the plaquette for the case of the halif
filling. The eigenstates of the MF Hamiltonian does not depend on the choice of
the gauge. The second term in Eq.(3) is the interaction of fermions.

We use the variational theorem proved in ref.[7] for the hard core bosons
in the absence of the interaction term. Let ¢mp(iy,...,inv) and Emp to be
respectively the exact ground-state wave function and the ground state energy of
the MF Hamiltoniar (3) (#;,...,15 — are the particle positions, < ¥mr{tur >=1).
Consider the contribution of a given bond to the expectation value of Eq.(3) over
the ground state. We have the following inequality:

- Z WMF(lﬂ»z,ﬂN)”l/’MF(],lz,JN)IS

T2...1n
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The left-hand side of this inequality is the contribution to the expectation value
of the exact Hamiltonian (2) in the bosonic representation. The normalization as
well as the expectation value of the operator given by the last term of Eq.(3)
are the same for the wave functions ¥yp and |¥yp|. Thus it is proved that the
ground-state energy of the initial bosonic Hamiltonian F; is bounded from above
b}' EMFI

Ey < Fuve.

This relation allows one to obtain an upper bound for the energy of the an-
tiferromagnet. We have to obtain the appropriate variational estimate for the
ground-state energy ol the MF Hamiltonian (3). As a variational wave function let
us choose the wave function corresponding to the Hamiltonian which is obtained
from Hwmr in the mean feid approximation in respect to the fermion interaction.
We assume the existence of Neel order in this state. Linearising the intcraction and
using the substitution < n; > (~1)*A/4 (we use the notation (—1}' = (-1)=1%)
we obtain the Hamiltovlan

=5 3 xpafay 4+ he) - AN (<1 (4)

<% 3

sl e
N

In this formula A i¢ the variaticnal parameter which is to be determined from the
condition of miniinum of the expectation value of Hyp in the state given by the
ground state of the mean field Hamiltonian Eq.(4). This expectation value is the
variational bound for the energy FEpyp. Nete that the cheoice of the wave function
is consistent with the MF treatment of the statistical interaction since the sum of
the phases around the plaguette for the Neel ordered state is the same as in the
case of Ay = 1/2.

The calcvlations are most easily performed using the symnietric gauge

_‘\_}ﬁ:(} Fi=1) i = (L= a(=1)).

1
Xiasi :
LR B ,\/,E

where 2,7 are the umit vectors corresponding tc the lattice spacing. In the
momentum space in terms of the doublets 1 = (ar,ar-¢) (0 < ke ky < m,
Q=(m, ™)) and Yo = (ar,ar_q,) (0 < —kz, ky <7, Qy=(—m, 7)) the equation (4)
has the form
H= Y $hMibne+ Y ¢f My,
ka>0, ky>0 ko<, ky>C

where the matrix My is

; = Cy A — iCz ) - ’_lﬁ
M ( A+icy —c , €19 ﬁ(cos kg £ cos ky).

/ F

1/2 where the momentum k

The eigenvalues are FE} = :’c(cos:’ ky + cos? ky + Az)
is restricted to the half of the Broullien zone k, > 0. The negative energy
levels are filled. Let us calculate the average of Hyp over this state. The

values of < xijafa] > for a given < :7 > does not depend on the choice of
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the gauge. This values are real (and positive) which can be deduced from the
parity invariance of our state. The expectation value of the second term in
Eq.(3) is < nynj >=< n; >< n; > — < afa]- >< a'}"a,' >. The expression for the
particle number at a given site has the form < n; >=1/2 +(~1}*A;/4, where the
parameter A; does not coincide with the parameter A. We obtain for A; and
(=< afa.j > | (which is the same for all bonds) the following expressions:

A — cos?k, + cos?k
A; =8 \ = = 2 = I
1 / Ekv { Ek
ka>0, ky>0 ko>0, ky>0
The final expression for the variational estimate is
EvY  A? v/ AN,

—_— = e m— ——— pu— —_— p— 5\
R D IR G U> & ()

ka>0, ky>0

where L? is the number of sites. The sum of the first two terms is the energy
in the mean field approximation Eq.(4).

At U =0 we get the exact energy of the MF Hamiltonian and the corresponding
estimate for the energy for the XY model is —0.2395 per bond. In comparison with
the energy determined with the help of the numerical simulations —0.27{£10%)
[5], the bound is too high. It is less restrictive than the bound based on the
simple trial variational wave function, For example the energy
corresponding to the Neel ordered state (in the y-direction} is —0.25. That is
i agreement with the statement of ref’s.[7,8] that the corrections due to the
fluctuations around the average magnetic field background are of order of unity.
The situation is different for the isotropic (XXX) model (U =1). In this case
the perturbation theory series is rapidly converges and the corrections due to the
statistics of particles are suppressed. For instance for the Hamiltonian (2) the
corrections to the MF approximation are of order ~ 1/(2U)® which is a sufficiently
small value [8]. In this sense our result can be considered as an estimate from
above for the perturbation theory series about the Ising limit. [¢ is difficult to
establish the restrictions of this type using the other methods. Minimizing the
expression (5) with respect to A {Ap = 1.19) we obtain E?%7/2L% = —-0.33034,
which is sufficiently good upper bound for the energy. For comparison the best
estimate obtained using the method of ref.[3] is —0.334. Note that although the
prediction of the linear spin wave theory [2] is —0.329, this method does not result
in the correct ground-state wave function and this value cannot be considered as
a variational bound.

For the anisotropic model we proceed as follows. For simplicity let us consider
the axially symmetric model although our method can be easily generalized to the
case of arbitrary asymmetry. We use the description in terms of the Holstein—
Primakof bosons for the equivalent Hamiltonian H =3, (ST S} +vS! S} + 57.5%).
After the substitution b; — (—1)*b; we get
£== 3 (S5 he) + 200 +he) )+ 2 (- D - 2). (6)
7 (b7 .c. ra R .c. i~ 5)n5 = 3)-

<ig> <iy>

Consider the trial variational wave function with the fixed number of bosons. For
this state the expectation value of the second term ~ (bfbf + b;b;) in Eq.(6)
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is zero. The Hamiltonian (6) without this term can be used to obtain the
variational estimate for the ground-state energy for arbitrary vy according to our
method. Note that the contribution of the omitted term is small in the framework
of the perturbation thecry ([3] since it appears only in the fourth order. The
analysis can be performed at arbitrary value of the parameter ~. For the XY
model (y =0) which is equivalent to the system of the hard core bosons at the
half filling we found the estimate —0.26776 per bond (An=3.4). This estimate is
in agreement with result of the numerical simulations [3].

In conclusion, although the wave function corresponding to the mean field
Hamiltonian (3) cannot be used to describe the long-range properties of the model
{(for example, the energy of the low-lying excitations) the ground-state energy can
be estimated with the snfficiently high accuracy. We found the variational upper
bound for the ground-state energy of the two-dimensional Heisenberg antiferromag-
net on a square lattice at arbitrary value of the anisotropy parameter. Our results
can be thought of as a peculiar upper bound for the perturbation theory scries
about the Ising limit and may be useful in the context of the other approaches.
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