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A new set of nonlinear fluid equations governing low-frequency electromagnetic
turbulence is derived for a nonuniform high-beta plasma.

More than 15 years ago, Strauss [l] derived a pair of coupled nonlinear equa-
tions for low-frequency (in comparison with the ion gyrofrequency) electromagnetic
waves in a uniform low-8 (B =8mnoT/B% << 1; where ng is the unperturbed par-
ticle number density, T is the plasma temperature, and By is the strength of the
external magnetic field) plasma. The Strauss equations, which govern the nonlinear
dynamics of non-dispersive Alfvén waves, have been derived from the MHD system
of equations, assuming that the plasma is incompressible and that the transverse
(to the external magnetic field) component of the wave magnetic field is much
larger than the compressional magnetic field perturbation. The Strauss equations
have also been generalized to include the effect of the plasma compressibility,
the parallel electron inertial force, as well as the plasma nonuniformities [2-7].
Here, one encounters linear and nonlinear couplings between the electron drift and
dispersive shear Alfvén waves. The nonlinear equations are useful for studying a
variety of problems including low-frequency turbulence as well as self-organization
processes in magnetized plasmas.

To the best of our knowledge, other authors have not derived the nonlinear
equations for electromagnetic waves in high-beta (viz. § ~ 1) plasmas. In such
plasmas, one has to incorporate the combined effect of the sheared as well as the
compressional magnetic field perturbations. Our objective here is to present a set
of model nonlinear fluid equations that govern the dynamics of weakly interacting
low-frequency electromagnetic modes in high-8 collisionless plasmas that contain an
equlibrium density gradient.

Let us consider the nonlinear propagation of finite amplitude electromagnetic
waves in a nonuniform high-3 plasma consisting of electrons and ions. In a
Cartesian coordinate system, we suppose that the external magnetic field Bo 1is
directed along the z axis whereas the equilibrium density gradient (d:;no) is along
the z axis. In the presence of low-frequency (in compatison with w. =eBg/myc;
where e is the magnitude of the electron charge, m; is the ion mass, and c is the
speed of light) electromagnetic fields, the perpendicular components of the electron
and ion fluid velocities are, respectively,
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where vg = (¢/Bo)E x Z,vp = —(cm.v},/eBoji x Vinng, v, = (c/Bows )0 + Vg -
Vi +v,8,)EL, Z is the unit vector along the external magnetic field, E; is
the perpendicular component of the wave electric field vector, n, is the total
electron number density, v, = (Te/me)l/2 is the electron thermal velocity, T, is
the electron temperature, and B; = B, + Z2B;, is the perturbed magnetic field.
For simplicity, the ion temperature is assumed to be much smaller than 7.
The parallel components of the electron (v.;) and ion (v;;) fluid velocities are
determined from the corresponding momentum balance equations.
For our purposes, we need the electron continuity equation

one +V - (n.ve)=0, (3)

the conservation of the total current density in the quasi-neutral approximation
ne =n; =n (which is valid for a dense plasma with wp =(47rnoez/7‘n..-)1/2 >> wei)

V-j=eV-[n{vi - v)]=0, (4)
as well as Faraday’s and Ampere’s laws
B;=-cVxE, (3)

and 4
V x By = -CZ'J (6)

where the subscript : (i) stands for the electrons (ions). Furthermore, we have
neglected the displacement current in (6) as we are dealing with low phase velocity
(in comparison with ¢) electromagnetic waves.

The nonlinear model equations for finite amplitude waves can now be derived.
We introduce n; =n —ng , where n,(<< ng) is the number density perturbation.
Substituting (1) into (3) and using {6), we ther obtain

52
C(VxBy),]+ 8 =0, (1)

4reng

(e +vE-V)lnne(z)+ N — b+ d,[vi; —

where N = nj/no,b= By,/Bo,d, =9, + (B1./B¢) -V, and v, is supposed to be
determined by
(8 +VE V)i, = —E, + ——(vg x By),, (8)
m; myc

where E, is the parallel component of the wave electric field. Here, we have
assumed that v, ;,8, << vg- V.
Inserting (1) and (2) into (4) and using (6), we have
; . va : Bocl
OV -EL +V-(vg-VEL)+ Ad,(Vx By), -~ 2253 x YN)-Vb=0,  (9)
¢

where vy =B0/(47rn0m,~)1/2 and ¢, = (Te/rn,-)l/2 are the Alfvén and lon-acoustic
velocities, respectively.
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Subtracting the parallel component of the ion momentum equation from the
corresponding electron momentum equation and making use of (6) we obtain

2 vtze B1
|B: + —d; (In no(z) + N)+ Ey - , (10
[4 Bo

(B¢ +vE V) (VxBy), =

where u.:,,,=(47rnoe2/me)1/2 is the electron plasma frequency.

The compressional magnetic field perturbation B;, is determined by taking the
curl of (6) and using (1) and (2), and then conmsidering the z component of the
resulting equation. The result is

2
(92 — 12 V2)b=c2(1 — b))V N + 7;i[v x (vg-VEL ) + %[v x (V x By),Byl.. (11)
0 0

Here, we have assumed that the wavelengths are much smaller than the density
inhomogeneity scale length. The magnetic field perturbation B; appearing in (7)
to (11) is naturally expressed in terms of E by means of (5). The latter also
gives

3 (V xBy),=¢(ViE, - 8,V-E,). (12)

We have thus derived five coupled nonlinear equations governing the evolution
of the five physical variables n,, E;, E,, E, and v;;. They generalize the previous
equations [2-7] by including the compressional wave magnetic fields along the
external magnetic ficld lines.

Let us now consider a well known limiting case. When E = -V¢ —
(2/c)8:A,, By = VA, x 2,B;, =0, and v, =0, where ¢ is the scalar potential
and A, is the parallel component of the vector potential, the SS- equations
(7)-(11) reduce to [2-7]

dy[ln no(z)+N]+ d via, =0, (13)
deVig+ 2 d v34,=0, (14)
and
2
de [(1 = \2V2)4,] +cd,¢ — e 4, [In no(z) + N] =0, (15)
€

where A, =c/wp,. is the collisionless electron skin depth, d; =9;+(c/Bo)(Zx V¢)-V
and d, =98, + (1/Bo)(VA, xZ)-V . In the absence of the density inhomogeneity
and the parallel components of the electron inertial and pressure gradient forces,
(15) takes the form

diA, +¢8,6=0. (16)

Equations (14) and (16) are evidently the Strauss equations [l].

To summarize, we have presented for the first time a set of coupled nonlinear
equations that govern the dynamics of finite amplitude low-frequency electromagnet-
ic fluctuations in non-uniform high-8 plasmas. In the linear limit, these equations
give a local dispersion relation which exhibits coupling between the magnetosonic,
shear-Alfvén, and electron drift waves. The present nonlinear equations should be-
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useful for studies of instabilities, turbulence and vortices involving electromagnetic
perturbations in high-8 plasmas.
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