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We propose & model of an anyon exciton (AE) consisting of a hole and several
anyons [l], and apply it to the spectroscopy of an incompressible quantum liquid
(IQL). Fractionalization of the electron charge makes properties of such entities
quite different from those of usual magnetoexcitons. The model describes a number
of properties established by few-particle simulations, including an abrupt change in
emission spectra vs electron-hole asymmetry of the system.

Experimental findings [2] in the optical spectroscopy of an IQL {3], underlying
the Fractional Quantum Hall Effect (FQHE) [4], stimulated recent theoretical
activity in this field [5-8]. It is one of the most remarkable properties of IQL’s
that their elementary excitations carry fractional charge [3], and are anyons [9,10],
i.e., obey fractional statistics [11,12]. The theory based on simulations [5,8]
predicts that fractional charges should manifest themselves by abrupt changes in
the electronic density distribution for an exciton existing against the background
of an IQL. These changes set in when the charge asymmetry of electron-electron
and electron-hole interactions is changed, and are accompanied with dramatic
changes in the position and the intensity of the emission band wvs the charge
asymmetry parameter [5¢,8]. The ratio h/l, where h is a distance between electron
and hole confinement planes, and [ = (ch/eH)? is the magnetic length, may be
chosen as such a parameter. Numerical simulations for few-electron systems are
accessible only for small values of h/l < 2. For the opposite limit case of strongly
asymmetric systems, h/l > |, anyon concept seems to be most promising. An
exciton, appearing against a background of an electron IQL, is a neutral entity
consisting of a valence hole and several anyons. E.g., if the filling factor v=1/3,
the charge of anyons e* = —e/3, their statistical charge a=-1/3 (for comparison,
a =0 for bosons, and « =1 for fermions) [9], and the number of anyons N =3.
If h > 1, the mean separation between anyons in an exciton is about A, which
is larger than the anyon size, [. Therefore, anyons are well defined particles,
anyon-anyon and anyon-hole interactions follow a Coulomb law, and the Coulomb
energy is small as compared to the IQL gap width. When h <!, only qualitative
results may be expected from the AE model. Nevertheless, we show that they are
quite encouraging. Recently there has been a significant activity in the hierarchy
theory of the FQHE [13,14], and some experimental data have been discussed
in these terms [15]. While the hierarchies provide a level classification for free
anyons, AEs may also give insight into the effect of an external (Coulomb) field
and the treatment of optical data.

721



We consider a model of an AE consisting of a hole and two semions, anyons
with e* = —e/2, a=~1/2 . I the hard-core constraint [12,13] is imposed, one
should chose a = 3/2. For spin polarized IQLs e* = —e/q, where ¢ is odd. Our
two anyon model is the simplest one giving insight into the properties of the more
realistic models with ¢ > 3. We assume that the magnetic field is strong enough,
i.e., the Coulomb energy ec = e?/el € hw., w. is the cyclotron frequency, and
use dimensionalless variables scaled in units of ¢ and l. Such an AE, consisting
of three particles, is described by three quantum numbers. Since it is a neutral
entity, a two component momentum K may be ascribed to it. Therefore, the
internal motion in it is characterized by a single quantum number, and the charge
fractionalization (CF) should result in a single-parameter array of energy bands,
instead of the single band of an usual magnetoexciton.

The preexponential factor in the wave function of a positively (negatively)
charged particle is a polynomial in complex coordinate z (Z), z ==z +1y. We
introduce for anyons the Jacobi coordinates z =z; -- 2z, and zo = (z1 + 22)/2, and
relate zo to a hole coordinate, z3, by the usual exciton transformation. The new
coordinates are z, ( = z9 — z3, and Z = (20 + 23)/2, and Halperin pseudo wave
functions [9] of the three non-interacting particles with a momentum K are:

Y, (21,22, z3|a) = By (a) exp{iKR + i(p: Y — py X)/2} x

x exp{—(1/4)(5 — K)*}|z|*z" exp(—|z|?/16).

Vectors R, p and r correspond to complex coordinates Z, ¢ and z; =7 x K,
Z is a unit vector in the direction perpendicular to the confinement plane, -&
is the dipole moment of the exciton, and B,(a) is a normalization factor. The
quantum number n > 0 is the relative angular momentum of anyons. The Coulomb
interaction may be written as V =V, + V,5. The first term is diagonal in n:

T'(ni+a+1/2)
Sﬁl‘(nl +a+1) )

< nlIVaaan >= 61;;1;; (l)
When m = |n; — nal = odd, all < ny{Ven|ny >= 0, which ensures the correct
interchange symmetry; only even n have a physical meaning. For even m:

< nllvah,nZ >=

- —{r(f‘-l-i%fiﬂ +a+ 1)/2"2ml[T(ny + a + 1)D(ns + & + 1))} x

x /0 q exp(-—qz/Z —~ qh)Jm (Kq)x

ny+nz+m

2

where & is the confluent hypergeometric function. For a = —1/2 the integral
< n|Vge|n > diverges logarithmically for n=0. This is the price for using the
oversimplified model, N =2. We use a cut-off V,, =1/4(r? +a?)/2. For the hard
core model, a =3/2, all integrals are regular.

For K =0 only diagonal matrix elements survive, and eqs.(1) and (2) give the
exact solution of the three particle problem.

x( +a+1,m+1;~¢%/2)dg, (2)
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Fig.l.Electron .  density, d{(p), for the ground state of a free magnetoexciton (ex), an exciton

in the presence of the IQL with v =1/3 (L), and for anyon excitons with statistical charges of
anyons a = —1/2, and 3/2; K =0,h=0. The last curve also describes the first excited state for

a=-1/2

Fig.l shows the effect of statistics on the distribution of electron density, d(p),
around a hole in an AE for K =n=0. The functions d(p) for a free exciton,
dez(p) =exp(—r?/2)/2x, and an exciton in the presence of an IQL (v = 1/3, =0},
are also shown. In the last case the excess density, dy(p), is plotted [8]. The
most striking property of dj is a considerable increase in the spread of the
density as compared to d.;, which is caused by the Pauli exclusion principle. This
property is reproduced by the anyon model, primary because of the increase in
the magnetic length, [* > 1. The curve d_1j2(p) is even in reasonable quantitative
agreement with dp; a realistic comparison may be done only for odd gq. The first
excited state of an a=—1/2 exciton colncides with the ground state of an o =3/2
exciton. The latter curve, having a flat minimum at p =0, highly resembles the
distribution of the electronic density for an exciton against the background of an
IQL, v =1/3 (Fig.2, curve 3 in Ref. [8]). This similarity in d(p) for the two
lowest states found both by simulations and for AE strongly suggests that when
h is small, the hard-core constraint for quasiparticles [12,13] is violated in an
exciton by the attractive field of a hole.

There are several distinctive features of AEs caused by CF. If K =0, and h
increases, ¥ remain exact eigenfunctions, but the level arrangement is changed;
the larger is h, the higher is the value of n for the ground level, and the wider
is the density distribution, d(p), for it. The n=0 and n=2 levels interchange at
her = 1.66 (for a =1), at this point d(p) for the ground state changes abruptly
from a=-1/2 for @ =3/2 curve, Fig.l. Since the K-dependence of diagonal matrix
elements, < n{V|n >, is the stronger the less is n, energy levels draw together
at different values of K. At K =0 non-diagonal elements of V vanish, and the
level rearrangement shows the patterns of the level crossing, while at K %0 of the
level anticrossing. This behaviour is seen in Fig.2 where dispersion laws, e(X),
and densities, d(0), at p=0, are shown. While ¢(K) are always monotonic for
the ground state, and changes smoothly for excited states, d(0) show dramatic
changed near level anticrossings. The humps seen in Fig.2c reflect a transfer of
n =0 component between wave functions of adjacent states. Dispersion is strongly
suppressed as compared to an usual exciton, Fig.2a, since in the K — oo limit
only one anyon moves away from the hole, while another remains in a bound state
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Fig.2.Dispersion law, ¢(K), for the threc jowest spectrum branches; a = -1/2. When k increases,
anticrossings become narrower, and ¢(X) for the ground state flatter. The curve for a free exciton
(ex) is shifted to facilitate a comparison with n~0 curve

Fig.3. Distribution of the electron density in the ground state of an anyon exciton along the
directicn g L K; k=15

and makes with the hole an ion (the existence of anyon lons was established in
Ref. [S¢] by supported by more recent calculations [16]). If A > i, dispersion in
the ground state is even more suppressed. Both the abrupt change in the ground
state with increasing k, and the suppression of the dispersion are in conformity
with the paiterns found by simulations [5¢,8].

The level intersections at K =0 have important implications for optical transi-

tions. The matrix elements for them are:
Ma(a) « /‘I’On(zl,22,2310)5(1‘1,1‘2,1“3)611‘1111“2,

here 6{ri,rz,r3) is a é-shape function of r;3 and r23 having a width about I,
in units of I. After the angular integration over r, only the M,{a) with n=20
survive. Therefore, exciton transitions are allowed in the emission at T =0, i.e,,
from the ground state, only if A < h,. This result is in agreement with numerical
data {5¢,8] which show that only weak transitions assisted by magnetorotons {MR)
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[17] are allowed at h > h.,.

The effect of the CF becomes even more spectacular when the ground state
density, d(p), is plotted for K #0. In Fig.3 d(p) is shown along the symmetry
line, g || &; it is symmetric with respect to p = —K for al K. When K
increases, a single humped distribution changes into a camel-back type. The right
hand part, centered near p =0, corresponds to the ground state of the ion, and
the left hand part to a free anyon. When K — oo, the separation between
maxima approaches K/le*| = 2K, and the electron density distribution in both
wings approaches d(p) = exp(—p?/4)/8m, which describes the shape of both a free
anyon and 1on. In the same limit the energy equals ¢(K) ~ ~ /7/4 — 1/8K, the
second term 1s the same as for MR's.

We have concentrated on the small h region, the least favorable for the AE
model, since the comparison with numerical data is available only for it. All the
more, the success of the model is impressive. However, there are two peculiarities
of the exciton ground state found by simulations [5,8], which the simple AE model
does not describe: i) at h =0 the function d(p) is of a single-hump type and
only feebly depends on K, and ii) at h=h. the minimum of ¢(K) shifts from
K =0 to Kpin 70, where K., is close to the roton minimum [17]. These facts
unambiguously signal the AE-MR coupling skould be invoked. The importance
of it is implied by Fig.3. The separation between an anyon and ion increases
with K, and an AE produces a strong Coulomb field aciing on the IQL, which
1s known to become unstable when an external charge about e approaches it
18], A simple idea that the AE creates a virtual MR and makes a bound
siate with it describes the behaviour at h =~ 0 very well [8]. When h increases,
the exciton dispersicn curves flatten and become closer, Fig.2b. As a result, a
pseudo-Jahn-Teller effect sets in, and a new ground state with a broken symmetry
and the momentum K., close to the MR minimurm appears. In this state the
shape of d{p) found by simulations, Ref. [3¢], is reminiscent of the curve K =1,
Fig.3. AE~MR coupling manifests itself also in the oscillatory hehaviour of dr{p),
Fig.! (similatly to the screening of charged impurities [17,18)).

In conclusion, we have proposed a model of anyon excitons for the description
of optical properties of IQL’s. We show that the model reflects distinctive features
of excitons in the presence of an IQL, and establishes properties of excitons, for
which their coupling to magnetorotons is of a crucial importance.
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