IMucema 8 XKITP, tom 57, Bem.11, crp.732 - 736 ©1993 r. 10 oous

DUAL FLIP-FLAP: A NEW PARADIGM OF COLLECTIVE
DYNAMICS

V.B. Andreichenkol)

Landau Institute for Theoretical Physics
GSP-1 117940 Moscow V-334, Russia

Submitted 11 May 1993

We define a new non-local dynamics as alternating inversions of the duality
of the spin configurations on an expanded space of order-disorder variables. Some
components of the novel procedure of the duality inversion are known, but the
principal "absolutely parallel]” operation of the dual complementation is new. The
fixing of the duality reduces our dynamics to the Swendsen-Wang cluster algorithm.

Sufficiently close to the second-order phase transition dynamical properties, like
thermodynamical ones, can be described by a set of critical exponents. The
character of singularities of the thermodynamic quantities in the transition point is
determined by the structure of the Hamiltonian and the number of components of
the order parameter [I]. The hypothesis of the scale invariance makes it possible
to obtain some relations between the critical exponents but is not sufficient to
completely define the dynamic exponents [1,2]. So, even in the 2D Ising model
for which exact values of the overall set of the thermodynamic exponents are
known, the value of the dynamic exponent [3] z=2.183 4+ 0.005, determining the
homogeneous relaxation time 7 ~ |T — T.|"%, is known only as a result of the
numerical simulations with local dynamic algorithms. The fact that z is close to
2, with the value of the exponent v =1 of the correlation length & ~ |T — T|~%,
ensues from the local character of the dynamics. Here, like in the problem of
random walk, to cover the distance £ it takes time, proportional to ¢2.

Different mechanisms ensuring relaxation can lead to diversity in critical dynamic
behaviour [2]. Near the critical point the correlation length becomes very large,
and lattice spins cannot adequately describe relevant degrees of freedom. The
non-universality of the critical dynamics has been demonstrated by Swendsen and
Wang [4] (SW), who have proposed the relaxation mechanism of a non-local type.
The SW dynamics, operating with spin clusters, yields the value of the critical
dynamic exponent [4] z = 0.35. Clusters in the SW conjecture scem to be closer
to the genuine collective degrees of freedom, correctly describing the spatial and
time correlations. Yet, the possibility of even a faster relaxation is still open to
discussion [ §,6].

2D Ising model is equvalent to a model of free fermions [7] which are known
as the proper variables for describing static properties, whereas SW clusters are
good objects for fast dynamics. The introduction of fermions is connected with
duality transformation. Then there arises a natural question about the relationship
between clusters, dual symmetry and fermions.

In what follows we shall study implications of the dual symmetry in the cluster
description, and vice versa, the role of randomly generated clusters in the duality
transformation. The solution of this problem will make it possible to construct
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a system of collective degrees of freedom, describing both the thetmodynamics
and dynamics in the critical region. In the present work we propose a new
principle of relaxation for the 2D Ising model and point to possible ways to find
generalizations for other systems.

The 2D Ising model, defined by the partition function

1EEDSN | Cataas (1)

(o) z

can be mapped by the duality transformation on itself [8] but at a different
temperature 7", which monotonically decreases with increasing temperature T of

the original model,
e 27 = tanhBJ (2)

Here 3, B* are inverse temperatures of mutually dual spin systems {o} and {u},
where {z} are the sites and {a} are the two basic vectors of the square lattice
considered further on. The transformation to dual spin variables {u} is realized
after the summation over spins of the original lattice {o} is performed [9]. The
following form of the exponent in the partition function (I)

eP/72%5+a = cosh B (1 + 0,044q tanh 3J)

is employed.
In the transformation to non-interacting clusters the summation over spins of
the original lattice is preceeded by a different representation [10] of the same

exponent
eﬂ""-"’v+m =eﬁ](e-2ﬁf 4+ (1 . e—-2ﬂ])6
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The clusters occuring in the result, consist of bonds placed on links of the
lattice with the probability
Pra= 1 - e'ﬂj(”a‘7=+a+1) (3)
To unify the duality transformation and non-interacting clusters it is sufficient
to study implications of the dual symmetry of the mixed four-spin correlation
function

Q= (UTUI'hxﬂzﬂz-l—a)v = (010’:+ae_2p"”-”v+a )a

in its representation via parameters of the clusters. Here the neighbouring couples
of spins are positioned on the ends of intersecting dual links. In this case the
subscript o means the procedure of averaging

L T e PR
=T

over the original spin lattice having the temperature (. For disorder operators
here their representations [11,12]

T
Yz = He—2ﬁlaa (4)
| — 00
via the product of exponents along the contour at the dual lattice are used.
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Expanding the exponent in the four-spin neighbouring-cross-linked correlation
function @, one can express it via the pair correlation function G ={0,0;44)s Of
the original lattice spins

Q = Gcosh23J — sinh28J

An analogous expression through the pair correlation function of the dual spins

F= (/‘x/"’t-{-a)a = (e—Zﬁ]o,a,+a)a
looks especially simple if the dual temperature is introduced
Q =sinh23"J — F cosh 237J.

The respective expressions for the correlation functions, pertaining to the dual
lattice
G" = (#x/‘z%—a)py

F*= ((7::0:+a);4 = (e—Zp.]””“r’-a);u

Q‘ = (azdr+al~‘z/‘z+a)y = (l‘zl‘:+ae—2ﬂ‘1“n“=+a );4-

are obtained through the permutation 8 — B*, 8* — 3. Taking into account the
well-known consequences G* =F and F* =G of the dual symmetry [11], enabling
one at dual temperatures to relate pair correlation functions of order and disorder
variables, it is easy to show the anti-self-duality of the mixed four-spin correlator

Q
Q" =-Q. (3)
To clarify the consequences the dual symmetry in terms of lattice: links, intro-
duce probabilities wy of the same (opposite) orientation of spins on neighbouring
sites (w4 +w_ =1). The mixed four-spin correlator @ can be represented via the
probabilities w4
Q=e"Ty, —ePly_
From the anti-self-duality (5) of @ there follow relations between probabilities w4

on dual links
wh = coshBJ(e P w, +eflw_)

w* =sinh BT (e PTw, — P w_)

Here note the substantial temperature dependence which can be cancelled in the
cluster representation.

Let w; (wo=1—w;) be the probability. of the presence (absence) of the cluster
bond on the link of the lattice {o}. The relationship between the probabilities
wy,o and wy ensues from (3)

wy = (1 - e 2w,
wo=e"2ﬂjw+ + w_

The consequence of the anti-self-duality (5) of the cross-linked correlator @ in this
representation is a very simple relation between probabilities of finding a cluster
bond on the intersecting links of the original and dual lattices

wy + wi =1, wo + wy = 1. (6)

734



Thus we get a symmetric description of clusters on the original and dual lattices.
Here the temperature dependence reveals itself only implicitly. At low temperatures
bonds are largely localized on the original lattice whereas at high temperatures
they move to the dual lattice. Let us connect one cluster bond with each
intersection of links of the original and dual lattices, this bond can be positioned
only on one of these two links. This simple scheme automatically ensures the dual
symmetry (6) of probabilities w;o. An unambiguous correspondence of clusters on
the dual lattices can be naturally termed dual complementation.

The absence of an unambiguous correspondence between spin configurations
of the original and dual lattices is quite natural. Like in the conventional
Fourier transformation, configurations on the dual lattice are the result of the
summation performed over all configurations on the original lattice. However it is
possible, using the dual complementation, to establish a correlation between spin
configurations on mutually dual lattices.

First, we should build a configuration of bonds for the given spin configuration
by means of probabilities p; o (3). Then by the dual complementation construct
a configuration of bonds on the dual lattice. Then we have to restore the spin
configuration for the given bond configuration. For this purpose we can randomly
choose the common orientation of spins of each cluster.

We call this construction the duality inversion of the spin configuration.
Note its stochastic character. Here the unambigucus procedure of the dual
complementation is "wrapped” on the both sides with a probabilistic correspondence
between spin and bond configurations.

So there naturally springs up a non-local method of the renewal of spins,
which can actually be described as alternating inversions of the duality of spin
configurations on an expanded space of the order-disorder variables. The proper
variables to describe static properties, fermions, are defined in the same space as
products of these variables [11]. The arising non-local dynamics can be named
Dual Flip-Flap (DFF). The overall cycle consists of two duality inversions. If to
”cut” the DFF cycle into operations of the dual complementation, we shall obtain
two SW algorithms. ,

The duality transformation plays the same role as the Fourler transformation.
The argument in favour of the DFF dynamics is the success in the removal of the
critical slowing down in the Fourier acceleration algorithm {13,14], which actually is
alternating application of Monte Carlo methods in the coordinate and momentum
spaces. Yet, it is clear that the only straightforward way to verify the absence of
the critical slowing down is to perform simulations, which are now in progress.

The diversity of perfect and inhomogeneous systems, possessing the dual symme-
try [9,15] is a natural area for DFF applications. In the context of the hardware
implementation it is worth noting the ”absolutely parallel]” character of the dual
complementation procedure. The possibility of solving other problems pertaining
to cluster algorithms at the hardware implementation has been demonstrated by a
new specialized processor [16,17] employing the Wolff one-cluster algorithm [18].
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