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We argue that both confinement and superconductivity may be described in
framework of Vacuum Correlator method. The closed similarity of this phenomena
is stressed. The fundamental vacuum correlator functions D and D, are expressed
through current correlators ( ordinary and monopolelike).

It is widely accepted point of view, that confinement in SU(N) gluodynamics
and QCD is a dual Meissner effect [1]-[3]. There is a strong support for this
opinion from recent Monte-Carlo studies in the framework of the so-called abelian
projection method [4]-[8]. Even the profile of the QCD string is similar to that
of the Abrikosov vortex line [9]-[13].

At the same time there are strong objections against the full similarity of the
underlying dynamics. Namely, in superconductivity one can work out all dynamical
equations for fields as classical equations, following from e.g. Landau-Ginzburg
Lagrangian, i.e. there are classical configurations behind the Abrikosov line and
superconducting vacuum. In contrast to that in QCD ( or SU(N) gluodynamics)
it is unlikely that field configurations are classical, since stable classical solutions
are topological and the net topological charge of vacuum is zero. Also in
lattice calculations the nonperturbative physics is ensured by a rather large set of
configurations, and this can be checked in the so-called cooling method [15, 14].

Therefore there is a necessity to formulate both superconductivity and confine-
ment using one and most general language, which does not depend on the classical
equations of motion. We suggest in this letter to use vacuum field correlators
(current correlators ) to describe both phenomena and demonstrate explicitly which
correlators are necessary for that and what duality means in this language. It
is remarkable that the same correlators are responsible for confinement both in
abelian and nonabelian theory. As an outcome we have a possibility of purely
quantum superconductivity, described by quantum correlators and not by classical
equations.

1. Wilson loop & correlation functions

We consider abelian theory, like QED with possible admission of magnetic
monopoles, since all final equations hold true for nonabelian case too with obvious
insertion of parallel transporters, traces etc. Confinement is usually characterized
by the area law of the Wilson loop along the trajectory of charges e, —e

(W(C)) = (exp ie/c; A,dz,) = (exp ie/F,‘,,da,,,,) = exp(—0S), (N
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where S is the area of the contour C in 14 plane, and string tension o is
expressed through field strength correlators ( FSC ) (Fp.(z)F,a(y)), [16, 17]

o= %ez / P (Fia(z)Fra(y)) + - -, 2

where dots imply contribution of higher correlators (FFFF) etc, which are unim-
portant for our purpose here.

On general grounds of Lorentz invariance FSC can be expressed in terms of
two basic scalar functions D(z) and D;(z) [17] and we shall write separately FSC
for electric and magnetic fields

dODE dDE

(Bi(=)E;(v)) = 6;(D® + DY + h{—3) + hihj -, (3)
oD oD¥

(Hi(=)H;(y)) = &;(D" + Dy + h*—25) — hhy —3, (4)

where h=(h,h*)Y/% h, =z, —y,.

For Lorentz-invariant vacuum, like that of QED or QCD, one has
DF = DH = D, DF = D = D,. However, for the same theories but at nonsero tem-
perature T, electric and magnetic correlators do not coincide. For superconducting
material Lorents invariance is violated too, and again DF % DH ,DE ¥ DY,

For a contour C in the 14 plane one has from ( 3 )

ez.
0=§—/d2zD(z)+--~. (5)

Let us now consider a magnetic charge g in the superconductor of second kind
and similarly to ( 2 ) introduce the Wilson loop operator

(W*(C)) = (exp ig/ F,,do,,) = exp(—c*S). (6)

Here o* is expressed through the dual fields Fy, as in ( 2 ), but since
Fiy=¢1234F23 = Hy, one has due to ( 4 )

2
o= / $2DH (2). 0

Comparison of ( § ) and ( 7 ) gives an exact meaning of the notion of
dual Meissner effect without reference to the underlying equations of motion. To
proceed one needs first to define D{(z) and D;(z) more explicitly together with
integrals ( 5 ) and ( 7 ) which may diverge. As can be seen in ( 4 ) DF(z)
can exist only due to magnetic monopoles [17] , indeed applying 8; to both sides
of ( 4 ), one has

(divH (=), divEI(3) = ~0° D% (z - y). )
Hence D¥(z) does not contain purely perturbative contributions ( at least in lowest
orders ) . In contrast to that D;(z) may contain perturbative contributions, which
should be subtracted from it in ( 7 ) , to lowest order one has

4¢?
Dy(z) = Dy(=) - <y 9
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and one should replace in (7) D; by D;. Hence the phenomenon of Abrikosov
string depends on the nonperturbative contents of D;, i.e. on the possibility to
create a mass parameter, characterizing the size of the string.

To see the mechanism of this mass creation, one can use the Ginzburg-Landau
equations to derive 1)

DiC(z —y) = (e’|4* - 97) (10)

-1
zy !’
which for the region outside of the string core, r > { ( € is the coherence length
(18] ) , when |¢|=¢o =const yields exponential decay at large distances with the
mass parameter

Dy(z) ~ e™™=, m = e|¢o| = 1/6, (11)

where § is the London ( Landau) penetration length.
It is interesting to compare this behaviour with that of D(z), measured recently
in SU(3) gluodynamics [19],

D(z) ~e ¥, u~1 Gev. (12)

One can visualize in ( 11 ), ( 12 ) that the notion of duality of QCD string
and Abrikosov string has a more detailed correspondence. To see more of this
correspondence one can compare profiles ( density distributions off the string } for
QCD string and Abrikosov string.
2. Profiles of the string
In the first case one can probe field inside the QCD string using so-called
connected p° and disconnected p%’° plaquette averages around the Wilson loop |

11- 13]
(W(C,)) — (W(C))(W(0))
o= : (13)
(w(c))
where C, is the contour formed by connecting Ao and the Wilson loop C, while

W(co) is the Wilson loops for Ao contour. In terms of vacuum correlators method
(VCM) one can obtain the following -expression for the Wilson loop

W(Co) = W(ON1+ [ do1s0)A0 (BB ()84 +- (19

where dots stand for higher cumulants and O((Ac)?) terms. Here & denotes the
parallel transporter ®(z,y)= Pexpie f: Audz,.

As one can see the p° quantity measures the spatial distribution of the
components of the field strength tensor F,, in presence of charges. The MC
simulations shows that electric field in confinement phase is squeesed in flux tubes
with an exponential [13] behaviour of the flux tube profile inside the string. In

) In more general form it can be shown that twopoint correlation function ( which does
describe a response of vacuum on the source presence) coincides with the second derivative of
effective Ginsburg-Landau Hamiltonian

-1
H'H o]

Al = 523#!
SH?
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case of the very long string one obtaines a simple analytic result for pj,. The
transverse shape measured at the middle is given by

2xa?

Pis = —-[D(0)(1 + p2) — D1 (0) 5 (uz)’]e“" (15)

where the obtained parameters are
4~ 0.190382fm, a’D(0) ~ 3.91468 x 107, D,;(0) = D(0)/3,
m from (11) is given 'by mayu, with a x/d.o.f=0.17.

One can see that such behavior of p§, is in good agreement with dual Meissner
effect picture, when the asymptotic of the field distribution of the vortex line is
exponential
o
mCXp(—T/&), . (16)
where & =const in ¢ — O limit, and & = 4.5y = [;° H(r) dr/H(co), when & goes to
zero. '

H(r)=

3. Twopoint FSC in terms of currents
Let us consider U(1) electrodynamics with monopoles ( there may be, for
example, Dirac monopoles, or topological defects in compact U(1) theory )

. .
3;4Fyv -.jv, ap Fur™)y,

where variables j,, ;,,, describe normal and monopolelike current correspondingly.
In line with [20] we can express the observed field strength tensors F, in. terms
of currents by redoubling field strength temnsors H,,, G,w as follows K

1
va - yv+ Guv, Gpv- iepvaﬁGa ’
H,,, G,, satisfy Maxwell equations:
apHpv = Ju, apG;w -jm
8y Huv=0, 8, Gu=0.
As a consequence one can define the dual pair of potentials 4,, ;1,, in usual form
Hy, = 0,4, — 0, Ay,
Gpv = au Ay _811 Ap .
Then in the Lorentz gauge for the Fourier components one has
1. . 1 »
A() = 23 (R), Ay (R)= 73 50 (B).

For the field correlator one easily obtains

(Fa(BFyp (1) = L5 ) b — Burbe} +

kyko

2 (17)
U+ 5 YOG = 232605 + (w0 = 7))
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while for the dual cumalant, which is responsible for the confinement of magnetic

charge, one has the same expression with the replacement j —j. From (17) we
deduce expressions for Fourier components of D and D; function

8 But)_ LGP AIE) £ L os oL G8)
g DEF2Di(R) =

or, in formal way, for the space forms

3 ,, *
Di1(h)=2 D“lﬂ"lﬁ(f +3 )(R),

D(h) = =2 Dy(h) — 01} )(h).

Conclusions

We have described both confinement and superconductivity using field correlators
D,D;. In the first case due to Lorentz invariance DF = DH = D and this
correlator ensures confinement. In the case of superconductivity and in absence
of the condensate of magnetic monopoles only Dff is nonsero and responsible for
confinement of magnetic charges and formation of Abrikosov fluxes. Correlators
D, D, are expressed through correlators of charge and monopoles currents. We have
shown that duality of confinement and superconductivety goes beyond symmetric
expressions for string temsions (5), (7), and reveals itself also in the form of the
field correlators (11), (12) and string profiles (15), (16).

All treatment above referred to the zero temperature case. It would be
very interesting to extend this approach of field ( current) correlators to nonzero
temperatures and especially to the phase tramsition region.

We are grateful for useful discussion to M.I. Polikarpov.
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