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To obtain the value of electromagnetic coupling constant at ¢ '=m22, &, which
plays a key role in electroweak physics one has to integrate the cross-section of
et e~ -annihilation into hadrons divided by (a—m?z) over s from threshold to infinity.
By combining, for each flavor channel, the contribution of lowest resonance with the
perturbative QCD continuum, we obtain 1/&=128.89 £ 0.06 a result which is close
to known result obtained with purely experimental inputs, i.e. 1/&=128.8740.12.

The detailed analysis of electroweak observables starts from three input pa-
rameters: G,, the Fermi coupling constant (extracted from muon decay), mz,
the Z-boson mass (measured at LEP) and &, the electromagnetic coupling
constant at g% = mZZ, obtained from dispersion relations. In fact, a Born
aproximation to the minimal standard model which starts with & (rather than
a = a(0)=1/137.0359895(61) ) reproduces the precise experimental values of the
Z-decay parameters (obtained at LEP) and of the W mass (obtained at hadron
colliders) with unexpectedly high accuracy [1,2]. For example for the ratio of
vector and axial coupling constants of the Z-boson to charged leptons one obtains

in this & Born approximation [2]:

l9v/94]a =0.0753(12) , (1)

while the latest experimental numbers are [3]:
[gV/gA]LEP=O-0711(20) s (2)
l9v/94lLEP+sLp =0.0737(18) . 3)

If instead of @ one uses «(0), then one gets:

[gy/gA]a =0.152,

which is about 400’s away from experiment as was stressed in [2]. The value of
& is of fundamental importance, and its error determines the uncertainty in the
theoretical prediction (1).

@ is defined through the following formulas:

o
1 -éa’

a=

(4)

$a =T (0) — LTZZ) , )
mz
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where in (5) charged leptons and five quark flavor contributions in photon polariza-
tion operator should be taken into account. Contributions of (¢f) and (WW) loops
may be omitted in (5); they are numerically small and usually are attributed to
proper electroweak radiative corrections [4]. The following integral representation

for éa 1s valid: (5)
' 1‘n2 (o4 . s
S = o / ere=alll®) o (6)

- my — s
where integral goes from threshold to infinity and its principal value at s=m%
should be taken. The lepton contribution of e, g, and 7 to (6) are readily
calculated and one gets: '

2
my_ .2
2

-2= . 8+6.2)=0.0314 . 7
o~ 31" 3,225+ 118+ 621 =003 (7)

o
(6&)} = 5[2 In

For the hadronic contribution in [5] the following number was obtained (see also

(6]):
(6a)n = 0.0282(9) . (8)

To obtain this number the experimental cross-section for ete~-annihilation into
hadrons below sp = (40GeV)? and parton model result above sy was used in [5]
and [6].

The difficulty in the theoretical determination of (6a)n comes from its logarith-
mic dependence on the infrared cutoff. As it was mentioned in [7], the result of
the dispersion calculation of (éa); can be reproduced by using perturbative QCD
with the following effective ”quark masses”:

my =33MeV, mg=71MeV, m, =174MeV ,
m, = 1.5GeV , m, =4.5GeV . (9)

Unfortunately one can not attribute any physical meaning to these values of m,
and mgq.

Our aim here is to present simplest sensible model for o.+.-_,hadrons Which
can simulate the result given in (8). To do this we use one physical resonance
(pyw, 9, /¢ and T) at the beginning of spectrum and then starting from E; =
m; + %l the QCD improved parton model continuum in each quark channel.

For resonance contribution we use Breit-Wigner formula:

3nl,..T

BB - m)? + T7/4] (10)

Oee =

Substituting in (0), neglecting terms of the order of (m/mz)? and integrating from

—oo to m+F

5 we obtain:

Fee

m

AW

(11)

(6a)resonance =

Rlw

. Thus vector meson contributions into da are:

P w p J/ T (12)
da  0.00274(13) 0.00024 0.00042 0.00053 0.000045

where we take into account experimental uncertainty for p-meson contribution as
the only noticeable.
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For continuum contribution we use the following formulas:

2 4 ws(8)
Or—1=2m . (1+ - ), (13)
27 o? a,(s)
—0= ——(1 1
Jr1=0 9 S( + p ) ’ ( 4)
_4ra? a,(s)
O3 _Q—T(1+——;r_)«’ (15)
167 o? 4m? 2m? a,(s)
o= e Sy 1= e E)(1 4 &
gee = Tem 1 B g By 2ele)y (16)
__A4r a? 4m? 2mi o a(s)
o= g 1= T Py 2y (17)
where we use for a,(s) the following formula:
127 )

(s)= 332 2ny)In s/ A0 (18)
with a,(mz) =0.129(5) as an input (this one loop value corresponds to 0.125(5)
at three loops, which is extracted from latest LEP data [2]). We take ny =35 for
s>m%, ng=4 for m¥ > s> mt",/w, ny =3 for mg/,,p > 5> mi and n; =2 Vfor
mg, > s> (m, +T,/2)>. This corresponds to A(®) =160 MeV, A% =220MeV, A3 =
270MeV and A(®) =300MeV.

Substituting (13) - (18) into (6) with m, =m; =0 we get:

I=1 I=0 s5 cé bb

sa 001174 000133 0.00249 0.00741 0.00123. (19)
Summing up contributions of (12) and (19) we get:
(6a)r =0.0282 , a=(128.87)"1. (20)

Comparing with obtained by integrating experimental data results (8) (éa), =
0.0282 and & =[128.87(12)]~! we see that agreement is astonishing. The con-
tribution of a, correction in (19) is rather small, 0.00087 + 0.00010 + 0.00018 +
0.00042 + 0.00006 = 0.00163, so even if light gluino octet slow down «, running
in order to accomodate a, values measured at quarkonium decays [8] (éa); will
decrease by 0.0002 only.

We have to make a few comments: :

(1) taking contributions ~ a? in continuum cross-section into account and using
next-to-leading order formula for «,(s) we increase (éa), by 0.00045; negative
contribution of ~ a3 term appeares to be approximately two times larger. In
beauty and charm channels third loop gives much smaller contribution than second
(numerically both are negligible} so we can trust our continuum calculation. In’
strange channel third loop contribution equals that of second, while in I =1
and I =0 channels it is two times larger. So below, say, 1.5GeV perturbative
continuum can not be approved. Allowing physical continuum variation at the level
of £15% around tree plus one loop perturbative continuum value in the domain
I - 2GeV we get +£0.0004 variation in (6a)n;
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(2) experimental uncertainty in Iy of vector resonances lead to (6a)n variation
of the order of 0.0002, while that in a,(mz) - to 0.0001 variation. Both are
small compared with the uncertainty 0.0009 in (8);

(3)subtracting from the p contribution the integral over Breit-Wigner formula
from —oo to two pion threshold we diminish it by:

3Fec

2ram,

6asub =

2arctanT,/(2(m, — 2m,)) =0.00017; (21)

(4) taking into account heavy quark masses m, = 1.6 GeV, my =4.7 GeV, we
decrease (6a)n correspondingly by:

(6a)m = 0.00031 + 0.00008 = 0.00039; (22)

(5) finally, at energies E = m; + %1 our model curve for o.+.- _jhadrons 15
discontinuous. To understand (6a)n sensitivity for the details of the model we
change it in the following way: we continue p, w, ¢ and J/v¢ resonance curves
up to their intersection with quarks continuum. In this way (6a)n Increases :

§(6a)n = 0.00051. (23)

Subtracting from (23) sum of (22) and (21) and taking uncertainty from point
(1) above for total shift we get: :

(6a)y = 0.0281(4), &= (128.89(6)) ™. (24)

So it is evident that the value of (éa), is rather insensitive to the details of the
model of 0,+.- . hadrons- More refined model which takes all known resonances in
each flavour channel into account gives ($a), =0.0275(2) [9].

For real progress in diminishing error in (8) systematic error in cross section
of ete -annihilation into hadrons in background region below 3 GeV should be
improved [5, 10].
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