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A generalized formulation of the principle of critical-point universality for
binary mixtures is proposed. Just as for one-component fluids, the critical behavior
of binary mixtures is determined by two scaling fields: a strong ordering field
conjugate to the order parameter and a weak field. Both scaling ficlds are linear
combinations of three field variables related to the temperature and the chemical
potentials of the two components with coefficients that vary along the critical line.

Binary mixtures exibit numerous phase diagrams [lI]. One of them, presented in
figure, is of a special interest because in this case the line of vapor-liquid critical
points, starting at the critical point CP; of the solvent, transforms smoothly into
a line of consolute points (liquid-liquid critical points) terminating at a critical
endpoint CEP,. In CEP; two critical liquid phases and a noncritical vapor phase
coexist. Thus the question arises how to describe the gradual transformation
of the near-critical physical properties of a highly compressible system near the
vapor-liquid critical point to those of an almost incompressible system near the
consolute point. The approach presented here is based on the principle of critical-
point universality and provides a joint description of these two types of critical
phenomena.
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VA 2 \ Fig.1.Phase diagram of a methane-hexane mixture. CP is
sy LLY \\ the critical point of hexane and CP; the critical point of
CPZ CP methane; CEP, is the critical end point on a liquid-liquid
CEF, 1 1 critical line, and CEP; the critical end point on a vapor-

liquid critical line; LV represents a liquid-vapor critical
line; LL the critical locus of consolute points (liquid-
liquid equilibrium); LLV indicates the line of three-phase
equilibrium ( two liquid phases and a vapor phase are in
coexistence) terminating in critical end points

T

The principle of critical-point universality implies that the thermodynamic
behavior of near-critical one-compoment fluids and of ”incompressible” binary
mixtures near the consolute (liquid-liquid) critical point is characterized by two
relevant scaling fields, a strong ordering field associated with the order-parameter
fluctuations and a weak temperature-like field associated with energy fluctuations.
We denote these fields as h; and h;. According to Pokrovskii [2]

hi=(9—-gc)+a(T-T) , (1)
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h2=(T—Tc)+b(g_gc) . (2)

Here g is the chemical potential (molar Gibbs free energy) for one-component
fluids or g =p=p; — u1, the difference between the chemical potentials of the two
components, for ”incompressible” binary mixtures. T is the temperature, a and
b are system-dependent coefficients and the subscript ”c” indicates values at the
critical point. Mixing of field variables to account for asymmetry between the two
phases does mnot affect the asymptotic critical behavior of one component fluids
and of ”incompressible” liquid mixtures. Such mixing only leads to corrections
to the asymptotic behavior (for example, a ”singular diameter” of the coexisting
curve) [3].

In this paper we show that in binary solutions the mixing of field variables
leads to more significant circumstances changing in some cases the asymptotic
critical behavior. According to the isomorphism hypothesis [4,5] a small impurity
(dilute solutions near the vapor-liquid critical point) and a small compressibility
of liquid mixtures near consolute points can be incorporated in the definitions of
h, and h, by introducing "hidden fields” conjugate to “hidden densities” , namely
the concentration of a solute in the former case and the total density in the latter
case. The field conjugate to the concentration is u and the field conjugates to the
density is 1 (chemical potential of the solvent) [5,6]. Thus the critical parameters
in (1) and (2) appear to be functions of u for the vapor-liquid critical point of
a dilute solution and of y; for the consolute point of weakly compressible liquids.
The question arises: how can liquid-vapor critical phenomena and liquid-liquid
critical phenomena be incorporated into a general unified picture?

To extend the principle of critical-point universality to the general case we
assume that the thermodynamic behavior of mixtures is still characterized by two
scaling fields h; and h;. However, following Saam (7], the scaling fields are now
linear combinations of three physical variables AT =T — T,, Au; = g — p1c and

Ap=p— pe:
h1 = alAp,l + agAT + a;;A/.l , (3)
hy=biAT + byAp; + b3Ap . (4)

One should note that all system-dependent parameters in these expressions, namely
the coefficients a; and b; as well as the critical parameters T, pi. and g, depend
parametrically on the position on the critical line. Let us emphasize once more
that all the coefficients a; and b; are now system-dependent functions of the
position on the critical line and may vanish at certain points.

In binary mixtures the density of the relevant thermodynamic potential, the
pressure P = —/V, is a function of three variables, namely the temperature T,
the chemical potential y; and the chemical ponetnials difference u=p2 — p1:

dP = pSdT + pduy + p2du, (3)

where p, =pz is the partial density of the solute, p the total molar density and
S the molar entropy. As usual, P can be separated into a singular part and a
regular part [6]:

P=P.s(h11h2)+Pr(T1#1)ﬂ‘) (6)
where the regular part is an analytic function of the three field variables T, 4
and p. The dimensionless singular part of pressure P, =P, /pEO)RTc(O) has the same
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universal form as for a one-component fluid (p$°) and Tc(o) are the critical density
and the critical temperature of the pure solvent and R is the molar gas constant)
and it satisfies asymptotically a scaling equation of the form [8]:

By (b1, ho) = b3~ f(ha /B5*7) (7)

where o , § , and v are the critical exponents.

The three physical densities Ap=p—p., Apz=ps—psc and As=s—s. can
be expressed as linear combinations of two densities ¢; and @2 conjugate to h;
and hj:

Ap=p O RTO(arp1 + bags) 8
Apy = pﬂO)RTC(Q)(as¢1 +b3ps) %)
As = pORT az01 + byp2) . (10)

On the path h; =0 these densities behave as ¢; h’z’ and 3 h;"". Now
we may define universal susceptibilities, namely a "strong” susceptibility x; and a
”weak” susceptibility j2:

= ..aﬂ = =Y gt = 3802 = —a
= (50) =mres () =me), (11)

with
¥(z)=(1 —a)d(z) — (B+7)2¢'(z) , ¥(z)=(2-)f(2) = (B+7)2f (2).

Strictly speaking, there is one additional universal susceptibility, namely the cross

susceptibility xi12 = x12 = (%E)h = (g—'ﬁ)h . However, in zero field h; =0 and for
1 2

hy > 0 (one-phase region) xj2 vanishes.

In practice, one cannot measure these universal susceptibilities, but one can
easily express measyrable thermodynamic properties in terms of x; and x2 using
usual thermodynamic transformations. As an example, the expressions for the
isothermal compressibility and for the osmotic compressibility in the one-phase
region above the critical point, x32 =0, have the following forms:

Oz az\"
— = RT)[(a3 — a;z)*x1 + (b3 — bsz)? +(—-) , 12
(55),., = FrtOes =+ s = baseal+ (52) (1)
(Q) - Lizxaxz + Lixa + Laxz (Eg_)' (13)
aP Tz 1+ Lo[(a3 - 0.12:)2)(1 + (b3 - bzz)zxz] P T ’
where
p(O) 9z \" -1 .
Lo = RTC(O)C— (——) ) le = RTc:(o)Lo(bzag - a1b3)2,
Pe ou P,T
1 f8p\"
Ly = RTO[q, — P (é) pr (a3 — a1z)}?,
1 [8p\"
Ly =RTOb, — — [ by — 2
2 c [ 2 e (33)1:,7( 3 bzz)] »
and where (g—fz)PT and (gf)PT are the regular parts of (g—:)P,T and (%)P,T’

i L]
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respectively. The main feature of the proposed approach is that the coefficients
in (3)-(4) vanish at certain specific points along the critical line. Presenting the
fields h; and h; in the form

hy=ayu1 — pac(p)] +a2[T — Te(w)] ,  ha =b1[T — Te(u)] + bap1 ~ pic(u)] , (14)

one can obtain for the coefficients a3 and b3

duic dT, dyge dT.
03=—(¢11 :; +azd#> , bs'—'—(bz :; +b1d#> . (15)

With the thermodynamic relation (5) and Eqs.(15) the combinations (a3 — a3z)
and (b3 — byz) can be written as

d

dz dz

a T,

a.3-—a.1:c=——a1d“cK s b3—b2$=—b2d“cK+(b2;z—j —'bl) i s (16)

with 1 dP, aP\° dT.
= | — - = < 17
p.RT, [ dz (OT),.FO dz ] ! (17)

2nd 1 (9P\°
az

(o8} o5 _2 18
Pc (aT)iu:O ai ( )

Here (%);1=0 is the the critical value of this derivative taken along the coexis-
tence curve and S. the critical value of the molar entropy. Thus, the coefficients
ratios (as/a1) and (b3/b;) take the form:

as _ dz
P RTcdch , (19)
b3 dz ch as b1
—=z— RI.—— ——\—=—%=] >
bz ’ Td#cK+ du (01 bz) (20)
Assuming that (du./dz) = RT.(z)/z(1 —z) on the critical line we obtain
Baz—z(1-2)K , (21)
ai
by _ 1 dT;. fa; b
poe-en-a - (3-5)] e

Egs.(21), (22) describe the variation of these coefficients along the critical line
including singular points. ’
a) For the one-component limits (z=0 and z=1) we have

RT.a; — 1 and a3o<b3cx:c->{(l)

Therefore at h; =0 and at h} > z(l —z) far away from the critical point:

dz o\’ dp -
— — ) - — T,
(31‘)1’,1' x (aP)P,T o z( z) , (aP)T‘zocxl « h, (23)
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Close to the critical point (h§ < (1 —z)):

oz - dp _
— L Ry 24
(5),, =x=r o (55), xxaeens (24
b) critical azeotropic mixture (K=0)
ap _ oz x2xhy® | W <z(l —2)
— hy? — z\" « . 25
(8P>TYGO(X10( 2 (au)P,TOC{(g_“)PT , k> z(l —z) (25)
c) extremum in the critical temperature (dT./dz=0):
as _bs _ (1 -z) 1 _dP
a; by T pRT, da '’

Li2=0 , L3/L;=(bz/a1)® ,

and the isothermal compressibility behaves as

o x1 < hy?, k) > z(l-z)
(¢9P)Tc * {const , h}<z(l-2z) ' (26)

d) consolute point in the “incompressible” limit

1 d
"RT.a3 — 1, and ay, bgocfocﬁ—+0 ,
Li2—0 |, Ly/Ly=(b3/a3)® ,
oz — dp ap\"
= — — — . 2
(55),p ot o (55),. (38),.~° @

We conclude that the proposed generalization of the scaling fields in the form
of Eqs.(3) and (4) provide the crossover behavior of the thermodynamic properties
of near-critical binary mixtures when the critical line gradually transforms from the
vapor-liquid critical locus in highly compressible fluids to the liquid-liquid critical
line in almost incompressible liquid mixtures. Due to the crossover behavior
of the relevant coefficients given by Egs.(21) and (22), the physical fields in
expressions (3) and (4) change their roles: Ap plays the role of the hidden field
in dilute solutions and of the ordering field in ”incompressible” liquid mixtures
while Ay, field does the same in the opposite cases. The thermodynamic properties
exhibit crossover behavior depending on the position of the critical point on the
critical locus. Further experimental tests of the predicted behavior would be very
interesting. .
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