Pis’'ma v ZhETF, vol. 77, iss. 12, pp. 778 - 783

© 2003 June 25

Trapping of plasmons in ion holes
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We present analytical and numerical studies of a new electron plasma wave interaction mechanism which
reveals trapping of Langmuir waves in ion holes associated with non-isothermal ion distribution functions.
This Langmuir-ion hole interaction is a unique kinetic phenomenon, which is governed by two second non-
linear differential equations in which the Langmuir wave electric field and ion hole potential are coupled in
a complex fashion. Numerical analyses of our nonlinearly coupled differential equations exhibit trapping of
localized Langmuir wave envelops in the ion hole which is either standing or moving with sub- or super ion
thermal speed. The resulting ambipolar potential of the ion hole is essentially negative, giving rise to bipolar
slow electric fields. The present investigation thus offers a new Langmuir wave contraction scenario that has

not been rigorously explored in plasma physics.

PACS: 52.35.—g, 94.30.Tz

More than three decades ago, Hasegawa [1], Karp-
man [2, 3] and Zakharov [4] presented an elegant
description of strong electromagnetic and Langmuir
wave turbulence in which high-frequency photons and
plasmons interact nonlinearly with low-frequency ion-
acoustic waves via the ponderomotive force arising due
to the spatial gradient of the high-frequency wave inten-
sity. This nonlinear interaction is typically described
by the two-fluid and Poisson-Maxwell equations, and
the governing equations admit the localization of pho-
ton and plasmon wave packets, leading to the formation
of envelope light and Langmuir wave solitons (also re-
ferred to cavitons) [5—8]. The latter are composed of
electron/ion density depression which traps photon and
Langmuir wave envelops. Moreover, Yan’kov [9] studied
the response of kinetic untrapped ions in the Langmuir
envelope soliton theory, and predicted the formation of
sub ion thermal small-amplitude negative potential wells
in plasmas. On the other hand, Mokhov and Chuk-
bar [10] found a Langmuir envelope soliton accompanied
with small-amplitude negative potential well created by
localized Langmuir wave electric field in a quasi-neutral
plasma with non-isothermal ions whose temperature is
much smaller than the electron thermal temperature. In
two and three dimensions, one encounters photon self-
focusing, Langmuir wave collapse [4, 11]. The formation
of cavitons has been observed in the ionosphere [12] as
well as in several laboratory experiments [13—15].

In this Letter, we present for the first time a new
Langmuir turbulent state in the presence of ion phase-
space vortices [16—19] that are associated with density
holes and bipolar electric fields in collisionless plasmas.

Ion phase-space vortices are natural products of ion-
beam driven two-stream instabilities, and they play a
very important role in laboratory experiments [20—22]
as well as in the near-earth plasma environment [23 - 25].
They are described by a wide class of Bernstein-Greene-
Kruskal solutions to the Vlasov-Poisson equations. In
the following, we show that nonlinearly coupled Lang-
muir waves and fully nonlinear ions holes admit a new
class of solutions. Specifically, we demonstrate the ex-
istence of standing and sub-ion thermal ion holes that
trap Langmuir wave envelops.

We consider an unmagnetized electron-ion plasma in
the presence of Langmuir waves and large amplitude ion
holes. At equilibrium, we have n.o = n;o = ng, where
njo is the unperturbed number density of the particle
species j (j equals e for electrons and 4 for ions). The
Langmuir wave frequency is w = (w2, +3k2V721e)1/ 2
where wpe = (47n.e? /m.)'/? is the electron plasma fre-
quency, n, is number density of electrons, e is the mag-
nitude of the electron charge, m, is the electron mass,
k is the wavenumber, Vr, = (T./m¢)'/? is the elec-
tron thermal speed, and T, is the electron temperature.
Large amplitude Langmuir waves interacting nonlinearly
with ion holes generate Langmuir wave envelope whose
electric field E evolves slowly (in comparison with the
electron plasma wave period) according to a nonlinear
Schrédinger equation

0 o} 0’E n
2w, [ — —\|E _ +(1-=2)E=
iwp <8t + vy 3:1:) + 3Vr, 922 +w, ( no) 0,
(1)
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where w, = (4mnge®/m.)'/? is the unperturbed elec-

tron plasma frequency and v, = 3kV2,_/w, is the group
velocity of the Langmuir waves. We note that (1) is
derived by combining the electron continuity and mo-
mentum equations as well as by using Poisson’s equa-
tion with fixed ions, and by retaining the arbitrary large
electron number density variation n. associated with ion
holes in the presence of the Langmuir wave ponderomo-
tive force. Assuming that the phase speed of ion holes is
much smaller than the electron thermal speed, we readily
obtain from the inertialess electron equation of motion
the electron number density in the presence of the pon-
deromotive force of Langmuir waves. The result is

ne = ng exp[t(¢ — W?)], (2)

where 7 = T, /T;, T; is the ion temperature, ¢ = ep/T;,
W? = |E|*/16mneT;, and ¢ is the electrostatic po-
tential of the ion hole. We note that the W-term in
Eq.(2) comes from the averaging of the nonlinear term
MeVhe - VVpe over the Langmuir wave period 27 /wyp.,
where vy, & —XeFE /mewp, is the electron quiver veloc-
ity in the Langmuir wave electric field.

If the potential has a maximum @, > 0, then there
exist in general trapped ions where ¢ < @max, while at
the point where ¢ = @max there are no trapped ions.
Similar to Schamel [16], we chose at this point a dis-
placed Maxwellian distribution for the free ions. The ion
distribution function associated with ion holes can then
be obtained by solving the ion Vlasov equation for free
and trapped ions, which have speeds larger and smaller
than [2(@max — })]/2, respectively. The electric poten-
tial will turn out to be essentially negative, with only
a small-amplitude positive maximum ¢, compared to
the large-amplitude negative potential well with a min-
imum at ¢min = —%. Thus, the potential is restricted
by =% < ¢ < Pmax, where 9 plays the role of the am-
plitude. Integrating the sum of the free and trapped ion
distribution functions over velocity space, we obtain the
ion number density [17]

M2
n; = ng bexp (- T) X

2
[ 0mar = 0) + K (s = 6) +
2

Vel

where M = V/Vr; is the Mach number, V is the ion
hole speed, Vr; = (T;/m;)/? is the ion thermal speed,
m; is the ion mass, and a is a (negative) parameter
which determines the number of trapped ions. The
normalization constant b is chosen so that when ¢ = 0,

+ WD( a(¢ - ¢max):| ) (3)
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the total density of ions is ng. Furthermore, we have
denoted [17] I(z) = exp(z)[l — erf(y/z)], K(z,y) =

/2
= (2/y/m) [ Jzcoshexp(—ytan®’¢p + zcos®f) x
0
x erf(y/zcosf)dd, and the Dawson integral
Wp(z) = exp(—z?) [exp(t?)dt. A plateau in the
0

resonant region is given by ¢ = 0, and a < 0
corresponds to a vortex-like excavated trapped ion
distribution. For positive a, we use [26] Wp(iz) =
= i(v/7/2) exp(z?)erf(z) (where i = 4/—1) and replace
the term (2/4/7|a|)Wp[y/a(¢ — ¢max)] in Eq.(3) by
(1/v/@) expl-a(d — Smac)lerfly/—a(d — fmar)l; W
note especially that M = 0, a = 1 leads to a Boltzmann
distribution n; = ngexp(—¢) for the ion density. The
Langmuir wave ponderomotive force acting on ions is
weaker by the electron to ion mass ratio in comparison
with that acting on electrons, and therefore it is ignored
in Eq.(3). The electron ponderomotive force is trans-
mitted to ions via the ambipolar potential ¢, which is
determined from Poisson’s equation

2 62¢ L n;

he M @)

Dedz2 " ng  mg’

where Ap. = (T./4mnge?)'/? is the electron Debye
length.

We are interested in quasi-steady state solutions
of Eqs.(1)—(4), which are fully nonlinear. We insert
E(z,t) = W(€) exp {ilX(2) + T()]} and ¢(z) = (¢,
where £ = 2 — Vit and W (z), X (z), T(x) are assumed
to be real, into Eqs.(1)—(4) and obtain a coupled set of
the nonlinear equations

W
36—52 —(A—1)W —Wexp[r(¢—W?)] =0, (5)
and
2 2
Tng — exp[r(¢ — W?)] + bexp ( — MT) X

< [T 6= ) + K (257 (6 ) ) +

+ WD( a(¢ - ¢max)):| =0, (6)

2
Vel

where £ is normalized by Ap. and A = 2w, (dT'/dt) —
3k?A%,,(1 — V?/v2) represents a mnonlinear frequency
shift. The system of Eqs.(5) and (6) admits the first
integral in the form of a Hamiltonian
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NG AN
H(Wa¢1A7M)_3(6—§> _5(6_5) -

—A-1)W?+ %{exp[T(zf) - W?)] -1} +
2

—I—bexp <_ MT) [P(¢max —¢,OL) +

+h(MT2,O,¢max—¢)—1]—H0:0, (7

where in the unperturbed state (|{| = oo) we have

used the boundary conditions W =0, ¢ =0, OW/I¢ =

= 0, 0¢/0¢ = 0. The constant Hy is chosen so

that H = 0 at || = oo. The auxiliary functions

are defined as P(z,y) = I(z) + 2y/z/7n(1 —y~1) +
b

+ (2/y+/7ly|)Wp(v/—zy) and h(z,a,b) = [ K(z,y) dy.

Because we are interested in symmetricasolutions de-
fined by W(§) = W(-¢) and ¢(§) = ¢(—¢), the ap-
propriate boundary conditions at £ = 0 are W = Wy,
¢ = —, OW/9E = 0, and 9¢/0¢ = 0. Hence, from
Eq.(7) we have

(= )W — > fexplr(~ — W3)] - 1} -
—bexp ( —~ MTz) [P(¢max +9,a) +
+h(MT2,o,¢max+¢) 1| =m0, @

which shows how the maximum values of W and ¢ are
related to M, ¢max and A for given values of 7 and
a. A practical application of the Hamiltonian (7) is to
check the correctness of any numerical scheme used to
solve Eqs.(5) and (6), while Eq.(8) depicts the parame-
ter regimes for the existence of trapped plasmons in ion
holes.

In the absence of the Langmuir waves, ion holes are
governed by the energy integral [27]

% (%)2 + (¢, M) =0 9)

where the Sagdeev potential for our purposes with
Dmax = 0 is [17]

#(6,3) = ~H Heplra -1} + e (- 27) »
N FPURTRVE TP T | R

Equation (9), which is obtained from Eq.(7) in the limit
of vanishing Langmuir wave electric fields, determines
the profile of ion holes. The latter exist provided that

T (¢) is negative between zero and +¢y. Multivalued so-
lutions of ¥(0) are ensured provided that 82 /8%¢ = 0,
while at ¢ = @o(—¢o), we must have ¥ /¢ > 0(< 0).
The condition ¥(¢g, M) = 0 gives a relation between ¢g
and M for given values of a and 7. It turns out that
ion holes without Langmuir waves have only a negative
potential, as pre-assumed earlier.

We have carried out numerical studies of the equa-
tions governing ion holes with and without Langmuir
waves for 7 = 0.1 and o = —1.0. First, we consider
small-amplitude Langmuir waves which are not strong
enough to modify the ion hole, but which can be linearly
trapped in the density well of the hole. Accordingly, for
W? < 1 Eq.(5) turns into a linear eigenvalue problem
of the form 3(d>W/d¢?) + [1 — exp(¢) — A]W = 0, with
the eigenvalue A and the corresponding eigen-function
W, and where ¢ is obtained by assuming W = 0 in the
solution of Eq.(6); see the numerical solution of Eq.(6)
in the form of ion density profiles and the associated am-
bipolar potentials, respectively, in the upper and lower
panels of Fig.1l. The eigenvalue problem will have a
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Fig.1. Ion holes without Langmuir waves (W = 0) for dif-
ferent Mach numbers M, with 7 = 0.1 and « = —1.0

continuous spectrum for A < 0, corresponding to “free
particles” (in the language of quantum mechanics,) and
a point spectrum for A > 0, corresponding to “trapped
particles”. We have investigated numerically the cases
corresponding to four different Mach numbers displayed
in Fig.1, and found the corresponding positive eigenval-
ues listed in the second column of the table below, where
each eigenvalue ) is associated to a bell-shaped eigen-
function W. Only one positive eigenvalue was found for
each case, and thus these cases only admit the ground
states for waves to be linearly trapped.
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Small amplitude | Finite amplitude

problem problem
M A M A
1.4 0.0013 1.4 0.1013
0.9 0.0463 0.9 0.1463

0.7 0.0772 0.7
0.0 0.1906 0.0

0.1772
0.2906

Next, we studied the presence of finite-amplitude
Langmuir waves in the ion hole, in which the fully non-
linear system of equations (5) and (6) has to be solved
numerically. The numerical solutions reveal that the ion
hole deepened and widened, admitting the eigenvalue A
to be larger. We investigated the special case with a
nonlinear shift of 0.1 of A as listed in the fourth column
in the table above, and found solutions for all cases ex-
cept for M = 1.4; the numerical solutions are depicted
in Fig.2. We can see from Figs.1 and 2 that the pres-

1

Electric field W

Ton density n, /n,,

Potential ¢

Fig.2. Ion holes in the presence of Langmuir waves for dif-
ferent Mach numbers M, with 7 = 0.1 and a = —1.0

ence of trapped finite-amplitude Langmuir waves makes
the ion density depletion both deeper and wider, and the
same holds for the ambipolar potential well. The deepen-
ing of the ambipolar negative potential well is a feature
closely related to the strongly non-isothermal trapped
ion distribution function. For this case, the electrostatic
potential had small-amplitude maxima ¢mayx of the order
~ 1073 on each side of the ion hole, this maximum of
the potential increased with increasing M.
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In order to investigate the conditions for existence of
ion holes in the presence of strong Langmuir fields, we
numerically solved Eq.(8) for ¢ as a function of M; see
Fig.3. We used the same parameters 7 = 0.1 and o =

M 1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

— W finite
-——-W=0

0 10 15 20

Fig.3. Numerical solutions of Eq.(8), depicting (=
—@min) vs M for Wy and Wy = 0.8, with 7 = 0.1 and
a = —1.0. We see that the ion hole loaded with the Lang-
muir wave electric fields has an upper bound on the Mach
number which is smaller than that without the Langmuir
wave fields

= —1.0 as above. Here, we assumed the Langmuir field
to be given as an external parameter (say Wy = 0.8) and
with a nonlinear shift that follows A\(M) = 0.3—0.14 M,
as obtained approximately from the table above. This
overestimates slightly the Langmuir field Wy for small
M and underestimates slightly the field for the highest
M; see the upper panel in Fig. 2. We assumed a max-
imum potential of @max = 0.003. We found that for
this set of parameters, the solution had an upper bound
M = 1.25 for the existence of localized solutions, which
is clearly smaller than the existence in the absence of
the Langmuir fields. In a more exact mapping of the
existence of ion holes one needs to explore more care-
fully the relationships between different parameters in
Eq.(8), possibly by solving the system of equations (5)
and (6) for different cases. Furthermore, the stability
of the time-dependent system is not explored here, but
could be studied by direct simulations of the Vlasov-
Poisson system.

It should be stressed that the properties of the
present Langmuir envelope solitons significantly differ
from those based on Zakharov’s model [4] which uti-
lizes the fluid ion response for driven (by the Lang-
muir wave ponderomotive force) ion-acoustic perturba-
tions and yield subsonic density depression accompanied
with a positive localized ambipolar potential structure.
Furthermore, consideration of a Boltzmann ion density
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distribution, viz. n; = ng exp(—¢), would correspond to
the case M = 0 and a =1 in Eq.(6). Here, as shown in
Fig.4, we have a localized Langmuir wave electric field
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Fig.4. A Langmuir caviton with a Boltzmann ion distrib-
ution for M =0, A=0.1,7=0.1and a =1.0

envelope trapped in a standing ion density cavity. The
corresponding slow ambipolar potential is positive and
localized.

In the numerical solutions of Egs.(5) and (6), the
second derivatives were approximated by a second-order
centered difference scheme [28], and the values of W and
¢ were set to zero at the boundaries of the computational
domain at £ = £40. The resulting nonlinear system of
equations was solved iteratively. We used 2000 sampling
points to resolve the solution.

In summary, we have presented the first analytical
and numerical studies of a novel nonlinear plasma state
in which the Langmuir waves interact with fully non-
linear ion holes. It is found that Langmuir waves have
a dramatic effect on the ion hole in that the formation
of envelope Langmuir solitons (Langmuir waves trapped
in ion hole) becomes an eigenvalue problem, and only
discrete eigenstates are allowed. Self-trapped Langmuir
waves in ion hole are found to be either standing or
moving with sub or super ion thermal speed. Ion cav-
ity loaded with the Langmuir waves is typically wider,
and are accompanied with negative localized ambipo-
lar potential. Physically, the broadening of the ion hole
and the enhancement of negative ambipolar potential oc-
cur because the ponderomotive force of the Langmuir
waves locally expels electrons, which pull ions along to
maintain the local charge neutrality. The deficit of ions

in plasmas, in turn, produces more negative potential
within the ion hole that is now widened and enlarged to
trap the localized Langmuir wave electric field envelope.
Hence, the properties of the ion holes in the presence
of Langmuir waves are significantly different from ion
holes without the Langmuir waves, or cavitons involving
the fluid [2, 3] or a Boltzmann ion response. In conclu-
sion, we stress that the present localized structures are
outside the realm of the two-fluid model as they involve
a trapped ion vortex state which can be dealt within the
framework of a kinetic description only. We have thus
solved one of the fundamental problems of the nonlinear
plasma physics which has potential applications in space
and laboratory plasmas that are driven by electron and
ion beams.
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