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The study of singularities and zeros of the generating functions of multiplicity
distributions is advocated. Some hints from well known probability distributions
and experimental data are given. The statistical mechanics analogies provoke to
look for a signature of phase transitions. The program of further experimental
studies of the singularities is formulated.

Multiplicity distributions in high energy collisions of various projectiles and
targets possess qualitatively similar (but quantitatively different!) behaviour. That
is why many fits by some well known probability distributions have been tried.
The ever more sensitive characteristics such as the ratio of cumulant to factorial
moments have been proposed [1] and have revealed new features of experimental
data [2]. Their understanding asks for further experimental and theoretical studies.
It is proposed here to pay more attention to the structure of singularities and
zeros of generating functions of multiplicity distributions. It is especially appealing
in view of possible statistical analogies [3-6].

Let us define the generating function G(z) of the probability distribution P,
by the relation

G(z)=> (1 +z)"P.. (1)
n=0
In what follows, we often use also the function
®(z) =In G(2). (2)

The (normalized) factorial (Fy) and cumulant (K,) moments of the distribution
P, are related to them by the formulae

oo

G(z)=Z:—T(n)qu (Fo=F,=1), (3)
g=0 %’
8(z)=Y g(n)n{q (K1=1), (4)

where {(n) is the average multiplicity.

First we consider some distributions which provide analytical examples for
the nature of the singularities. @~ We start with the fixed multiplicity (FM)
distribution when the sample of events of the same multiplicity (ng) is chosen,
then proceed to Poisson distribution (P) as a reference to independent emission
processes and, finally, treat the gamma- (T'), negative binomial (N B) and lognormal
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(L) distributions widely used to fit experimental data at high energies. The
corresponding functions ®(z) look like

$FM (2) = nglIn(1 + 2), (3)

87 (2) = z(n), (6)
&T(2) = —pln(l - (%)m(l + 2)), (7
VB (z) = —kIn(l - "—<kl)), (8)

where p and k are the adjustable parameters. The lognormal distribution is
here the only one which is not determined by its moments. From the integral
representation of its generating function

#%(z) - —In /Om exP[—Q“—;U_ZL) +zIn(1 + 2)]d(In z) (9)

it is easily seen that its convergence radius is given by the inequality
e+ 15 < 1, (10)

i.e. the singularities come close to the point z =0 but they are ”soft” in the
sense that the normalization condition G(0) =1 persists. For other distributions
the non-trivial (essential for our purposes) singularities are situated at

znp = kf(n), 11

(
zp = exp(pu/(n)) — 1, (12
zp = 00, (13

(14)
Let us note that NB and I-singularities are close to z =0 if the parameters
k and p are much less than (n). It is especially interesting because factorial
and cumulant moments are calculated as g¢-th derivatives of G(z) and &(z) at
that point and the nearby singularity influences their behaviour substantially. In
particular, it is important for the ratio of the moments

ZFM =_1.

Hy=Ky/F,, (15)

which is identically equal to zero for Poisson distribution, alternates sign at each
rank in case of fixed multiplicity, and is always positive for I' and NB tending at
asymptotically large ranks to zero as ¢~* [7]. The different type of behaviour is
predicted in QCD with strong decrease at low ranks followed by (quasi)oscillations
at larger ranks {1, 7, 8]. It would be interesting to guess what singularity governs
such a shape. There is no solution of the problem yet.

Let us get some guides from experimental data. In experiments with different
projectiles and targets the adjustable parameters are diiferent and energy dependent.
Nevertheless, one can get qualitative estimate of the approximate locations of the
singular points. In ete~-collisions, the N B-estimates give rise to k/(n) ~ 1 (see,
e.g., [9]) and, therefore, the singularity is situated at z,. ~ 1, ie. rather far
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from z=0. It is much closer to the origin in hh-collisions where (see, e.g.,
(10]) k/(n) ~ 10~'. The AA-data is not so definite [l11] (even though the
lower statistics is slightly compensated by larger multiplicity ) and give rise to
k/(n) < 107! and, thus, to ever closer (to the origin) singularity. The singularities
move to the origin with energy increase. Probably, these qualitative tendencies
are related to somewhat similar regularities in the behaviour of the depth of the
minimum of H, found for various reactions (see [2, 11]) and to oscillations of
H, at large g (see below). Moreover, the oscillations of experimental distributions
about the smooth N B-fit (see, e.g., [9]) could be connected with those oscillations.
Their physical meaning could correspond to various number of subjets (ladders
etc.) contributing at different multiplicities and should be checked in Monte-Carlo
models. Another possible source of oscillations due to the cut-off of the multiplicity
tail by conservation laws should die out asymptotically [12].

However, this cut-off plays an important role when one tries to restore the
generating function directly from experimental data. Actually, the series (1) is
replaced now by the partial sum in form of the polynomial in z

N

Gr(z)=) (1 +2)"P, (16)

n=0

with N equal to the highest observed multiplicity.  Therefore the truncated
generating function Gy (z) has N complex conjugate zeros

d Z
Gn(z)=TJ(1 - =) (17)
i=1 7

It was shown by DeWolf [13] that the zeros cover a circle in the complex z-plane
for ee-events generated by JETSET Monte-Carlo program at 1000 GeV. It reminds
of Lee-Yang zeros [3] in statistical mechanics. They seem to close in onto the
singularity of G(z) at some real z=2z, >0 when N increases.

It is known [14] that the degree of infinity k£ of Gy(z,) is the same as the
order of singularity of G(z) at z =2, in case of algebraico-logarithmic behaviour
and (for the algebraic singularity) is determined at N — oo by the slope on
double-log plot

InGyn(z,) » kIn N +1In(A/T(k + 1)). (18)

Here Ay is the residue of G(z) at z =2z, (NBD provides an example; see (8)).
Also, the order p of the integer function is given [15] by the formula

—InPy(l +2,)" _1

i . 19
Jim (19)
The above formulae can be uséd when interpreting experimental data.
The cumulants are determined [5, 13] by the moments of zeros locations
N N
(g—1)! —q (g — 1) cos gb;

=_M_ ) = _ 20
K== L5 o (20)

i=1 =1 ]

where we denote z; =r; exp(i6;). Thus, the oscillations mentioned above are related
to the phases of zeros.
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The study of singularities of the generating function becomes more fruitful
if one uses statistical mechanics analogies and recalls the Feynman fluid model
[4-6]. The generating function is analogous to the partition function of the grand
canonical ensemble and $(z) to free energy. The total rapidity range plays a
role of the volume and the variable |+ z is just the fugacity. One can define
the ”pressure” p(z) and the mean number of particles at given fugacity (n(z))
(proportional to the usual pressure and density) by the formulae

p(z) = Jim X, (21)
(2w = (1 +2) 5%, (22

where ®n(z) =InGy(z) and (n(0))y = (n). Let us note that the behaviour of
(n(z))n in the complex z-plane determined from experimental data should easily
reveal zeros z; of the function Gy [5] since it has poles exactly at the same loci
Zj

ey =30 12 (23)
N i=1 zZ—2
The plots of p(z) from experimental data about ee and hh-reactions extrapclated
to ¥ — oo have been shown in [6]. We have checked that the latest LEP
data (e.g., [9]) well coincide with extrapolation used in [6] before the LEP data
became available. The authors of [60] claim that there is no phase transition
in ee-collisions. The qualitative conclusion from Figs.3a and 3b of [6] is that
p(z) increases at z >0 much faster in non-diffractive hh-collisions as compared to
ee-collisions. It demonstrates that the hh-singularity is closer to the origin that
corresponds to above conclusions. The increase would be even more drastic in
case of AA-collisions (the data of EMUOI [11] were used for estimates) but it is
strongly influenced by single events with very high multiplicity. Thus AA-analysis
is hard to extend to large z. Probably, it has a physical origin since AA-collisions
are the most suspected ones for phase transitions. Somewhat unexpected looks
the constancy of p(z) at z < 0 for hh-collisions in Fig.3b of [6]. In statistical
mechanics it would be a signature for phase tramsition. If supported by further
studies, it would provide hints for theoretical speculations. Really, the problem
of phase transition in systems with relatively small number of particles should
be treated carefully. In particular, it depends on the steepness of increase of
p(z) with z. Some criteria of it are awaited for. However, the similarities may
well happen to be mainly of formal nature and just the methods of analysis are
comparable. Nevertheless, some physical models based on the analogy have been
attempted [16-19].

Our preliminary qualitative results allow to formulate the further program of
analysis of experimental data which consists of determining:

1) the radius of convergence of Gy (1) according to Cauchy (P,:/") and
D’Alembert (P,/P,_;) criteria;

2) the approach to the Carleman condition Y ., F{,ll/ > =00 at high energies
(N — oo);
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3) location of zeros of Gy(z) (formulae (17) or (23)) and their density;
4) the order of the singularity of G(z) and its residue (18);

5 )the order of the integer function (i9);

6)the behaviour of the ”pressure” p(z) (21);

7) the behaviour of the "multiplicity” (n(z)) (22);

8) the higher derivatives of ®y (the fractional derivatives can be used also [20],
especially, in connection with the classification of the phase transitions of
non-integer order proposed recently [21]).

The extrapolations to Y — oo should be attempted. It is quite probable that
zeros locations will differ for different classes of processes (diffractive and non-
diffractive; two- and three-jets etc). The drastic change in the behaviour of &y
or its derivatives must be carefully analysed to look for a possible signature of
the phase tramsition. In parallel, the theoretical criteria of it in finite systems
should be developed. We hope that the first stage of the program formulated
above can provide some new insights into the physics of multiparticle production.
More detailed results of it will be published elsewhere.
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as references [14, 15] and sending the unpublished paper [13]. The discussions
with R. Hwa are acknowledged. This work is supported by Russian fund for
fundamental research (grant 94-02-3815), by Soros fund (grant MSVO000) and by
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I.M.Dremin, Phys. Lett. B313, 209 (1993).

I.M.Dremin, V.Arena, G.Boca et al.,, Phys. Lett. B336, 119 (1994).

C.N.Yang and T.D.Lee, Phys. Rev. D8, 404, 410 (1952).

R.P.Feynman, Phys. Rev. Lett. 23, 1415 (1969).

K.J.Biebl and J.Wolf, Nucl. Phys. B44, 301 (1972).

S.Hegyi and S.Krasznovszky, Phys. Lett. B251, 197 (1990).

IM.Dremin and R.C.Hwa, Phys. Rev. D49, 5805 (1994).

IM.Dremin and V.A.Nechitailo, JETP Lett. 58, 881 (1993).

P.D.Acton et al. (OPAL), Zs. Phys. C53, 539 (1992).

G.J. Alner et al. (UAS), Nucl. Phys. B291, 445 (1987).

M.M.Chernyavskii, Proc. 24th Int. Symposium on Multiparticle Dynamics, Italy (1994), to be
published by WSPC.

I.M.Dremin, Physics-Uspekhi 164, 875 (1994).

E.A.DeWolf, A note on multiplicity generating functions in the complex plane (unpublished).
. P.Dienes, The Taylor series,Oxford,1931,ch. XIV.

. E.Titchmarsh, The theory of functions, Oxford, 1939, ch.8.3.

D.J.Scalapino and R.L.Sugar, Phys. Rev. D8, 2284 (1973). -

N.G.Antoniou, A.I.LKaranikas, and S.D.P.Vlassopulos, Phys. Rev. D14, 3578 (1976); D29, 1470
(1984).

P.Carruthers and I.Sarcevic, Phys. Lett. B189, 442 (1987).

I.M.Dremin and M.T.Nazirov, Sov. J. Nucl. Phys. 55, 197, 2546 (1992).

. IM.Dremin, JETP Lett. 59, 561 (1994).

. R.Hilfer, Phys. Rev. Lett. 68, 190 (1992); Phys. Rev. E48, 2466 (1993).

- e b e e
NOoUh N =00 XNU AW

N N — —
=S 0w

761



