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We calculate the distribution of eigenfunction amplitudes and the variance of
the “inverse participation ratio” (IPR) in disordered metallic samples. The weak—
localization corrections to the predictions of the Random Matrix Theory are found.

Statistical properties of disordered metals have attracted a considerable research
interest last years. It was understood that the old problem of a quantum particle
moving in a quenched random potential considered earlier in the context of
Anderson localization and mesoscopic phenomena [1] exemplified a particular class
of chaotic quantum systems and had much in common with such paradigmatic
problems in the domain of Quantum Chaos as quantum billiards [2]. The Wigner-
Dyson energy level statistics first found in the framework of random matrix theory
(RMT) [3] and considered to be a “fingerprint” of quantum chaotic systems [4]
was shown to be relevant for disordered metals as well [5,6]. This fact gave
a boost to a broad application of RMT results for qualitative and quantitative
description of mesoscopic conductors and stimulated a common interest to statistical
characteristics of spectra of disordered systems [7].

At the same time less attention was paid to statistical properties of eigenfunc-
tions in disordered or chaotic quantum systems. Recently, however, the distribution
of eigenfunction amplitudes was shown to be relevant for description of fluctuations
of tunnelling conductance across the “quantum dots” [8] as well as for understand-
ing some properties of atomic spectra [9]. Besides, a so called “microwave cavity”
technique has emerged [10] as a laboratory.tool to simulate a disordered quantum
system. This technique allows to observe directly eigenfunctions spatial fluctuations
and was used in [11] to study experimentally the eigenfunction statistics in weak
localization regime. All these facts make the issue of eigenfunction statistics to be
of special interest and are calling for a detailed theoretical consideration.

In order to characterize eigenfunction statistics quantitatively, it is convenient
to introduce a set of moments I, = [|¢(r)|??d?r of eigenfunction local intensity
[¥(r)|> [12). The second moment I, is known as the inverse participation ratio
(IPR). This quantity is a useful measure of eigenfunction localization: it is inversly
proportional to a volume of a part of a system which contributes effectively to
eigenstate normalization. For completely “ergodic” eigenfunctions covering randomly,
but uniformly the whole sample I; o< 1/V, with V being a system volume. If, in
contrast, the eigenfunctions are localized, i.e. concentrated in a region of linear size
¢, the mean IPR scales as I; « £~P2 where D, is an effective dimension which can
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be different from a spatial dimensionality d because of a multifractal structure of
eigenfunctions [12]. Correspondingly, IPR fluctuations reflect level-to-level variations
of eigenfunction spatial structure.

The most complete analytical study of statistical characteristics of eigenfunctions
was performed for the cases of Od systems [13,14], as well as for strictly 1d [15]
and quasi 1d [16,17] geometry. Some analytical results were obtained also fora
system in the vicinity of localization transition in the dimensionality d =2+¢, € < |
(12] as well as for d — oo [I8]. Let us note that in Ref. [13,14, 16-18] the
supersymmetry method was used which is a very powerful tool to study distribution
functions of various quantities characterizing eigenfunctions statistics.

In the present Letter we address sytematically the issue of the eigenfunction
statistics for arbitrary spatial dimensionality d in the weak localization domain.
In the leading approximation (which neglects spatial structure of the system and
treats it as a zero-dimensional one) these statistics are described by the RMT
which predicts a Gaussian distribution of eigenfunctions amplitudes (r) [13,17].
It is known since the paper by Altshuler and Shklovskii [6] that the diffusion
motion of a particle in a metallic sample produces deviations of spectral statistics
from what can be expected from RMT. To our best knowledge, the analogous
problem for the eigenfunctions statistics in 2D and 3D systems has never been
studied. It is just considered in the present paper. We use a recently developed
method [19] which is based on the supersymmetry technics [5,20] and combines a
perturbative elimination of fast diffusive modes (in spirit of renormalization group
ideas) and consequent non-perturbative evaluation of a resulting Od integral. In
this way, we calculate the deviations from the Gaussian distribution of #(r) in
mesoscopic metallic samples. We calculate also the variance of the IPR which
turns out to be of order of 1/g?, where g is the dimensionless (measured in units
of e?/h) conductance of the sample.

In order to calculate the distribution of eigenfunction amplitude and to find
the IPR variance we use the fact that relevant quantities can be expressed in
terms of correlation functions of certain supermatrix o-model [5,20]. A quite
general exposition of the method can be found in [21] and is not repeated here.
Depending on whether the time reversal and spin rotation symmetries are broken
or not, one of three different o-models is relevant, with orthogonal, unitary or
symplectic symmetry group. We consider mostly the case of the unitary symmetry
throughout the paper; for two other cases the calculations are similar, and only
the results are presented.

The expressions for Tq_ and }27 (the bar standing for disorder averaging) in
terms of the o-model read as follows:

- 9
= ——— 1 q —
L= wine" gl

_ /DQexp{—f(q)(u,Q)+ ;—/ddrStr(VQ)z} , (D

— P, 0 I
— D ~FO(u, Q)+ - [ d%rStr(VQ)?} ; 2
o [ Peerl-F O Q)+ ; [absuvery i @

where

}'(")(u,Q)=/ddr{eStr(AQ)+uStrq(QAk)} ,
Q=T AT , A =diag(1,1,-1,-1) ,
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k=dieg(l,~1,1,-1) , S =mD/4. (3)

Here T is 4 x 4 supermatrix belonging to the coset space U(l,1|2), D is the
classical diffusion constant, v is the density of states and V is the system volume.

Generally speaking, the RMT predictions are applicable to a disordered metallic
system under the following conditions: L > I; E. > A, where L is the system
size, | is mean free path , E, = hD/L? is the Thouless energy and A is the
mean level spacing. Ligenfunctions for such systems are known to be ergodic
with amplitudes (r) being uncorrelated ( for |r — /| > 1) Gaussian distributed
complex (real) variables for broken (unbroken) time-reversal symmetry respectively.

This immediately gives [17,14] Ié") =gq!/V9~1 and E=E2, where the superscript
u refers to the unitary symmetry.

In the framework of the o—model formalism these results can be easily repro-
duced if one neglects any spatial variation of the supermatrix field Q(r). Then
eqs.(1), (2) are reduced to integrals over a single supermatrix which can be
evaluted exactly. The corrections to RMT results have a form of a regular ex-
pansion in small parameter A/E.=g~!. The systematic way to construct such an
expansion can be briefly outlined as follows [19]. The matrix Q(r) is decomposed
as Q(r) =Ty 'Q(r)To where Tp is a spatially uniform matrix and Q describes all
modes with non-zero momenta. When A <« E., the matrix @ fluctuates only weak-
ly around the value @ = A. Thus, it can be expanded as Q= A (l + W+ WTZ +)
- where W is a block off-diagonal supermatrix representing independent fluctuating
degrees of freedom. Substituting this expansion into eqs.(1)-(3) and integrating out
the “fast” modes one obtains an expression for renormalized functional Fg}(u, Qo).

where Qo =7y 'ATy is an r-independent matrix (zeto mode). The contribution of
eliminated “fast” modes is expressed in terms of the diffusion propagator P(rj,r;).
For an isolated sample this propagator has the following form:

P(ry,r2) = Z cos{qr,) cos(qry) P(q) ,

q
1 | ni nd
Plg)= -— o — =x(2,..., 2
(q) 27rVVDq2+E k) q W(Lll )Ld)v
n=0,1,%2,... , Y al>0, (4)

where the system is thought to be of the size L; x L; x ... x Ly. Finally, the
integrals over Qo are performed exactly.
Applying this method to egs.(1), (3) one obtains:

) q! a 1
I,S)=Vq—l{l+?1q(q—l)+0(g—2)}, 8]

where g =27nvDL%? is the conductance of the sample. The value of the coefficient
ay =g}, P(q) depends on the spatial dimension and is equal to a; =1/6 in quasi
ld systems. For d > 2 the corresponding sum over momenta ¢ diverges at large
lg| and is to be cut off at |g| ~{~!. This gives a; = ;-InL/l for d =2 and
ay «x L/l for d=3.

781



Knowing all the moments Iéu) it is easy task to restore the whole probability
distribution P(y) of the eigenfunction local intensity y= V|y(r)|%:

P (y) =€V [1 + %(2 -4y+y’)+0 <;1;)] : (6)

The corresponding equations for systems with unbroken time reversal symmetry
(orthogonal and symplectic oc—model) are as follows [22]:

o - G g)eo@)]. o
Plr)(y) 4ye=2 [1 + ggl- (3-6y+2y°)+0 (%)] . (8

The leading terms here reproduce the well-known Porter—Thomas distribution
which is the RMT result [3]; the rest is the weak localization correction. In
the quasi ld sample these expressions coincide with that obtained in [17] if one
identifies the scaling parameter introduced in [17] as z=g¢~!. Equations (6), (7),
(8) are valid up to y < \/g/a;. For larger values of y (i.e. in the far “tail”) the
distribution function P(}) differs strongly from that of the random matrix theory
and can not be found by the method used here.

Very recently, the distribution of eigenfunctions amplitude, P(}), was studied
experimentally in a microwave cavity with disorder [11]. The reported results are
in good agreement with our formula (7).

Now we turn to the consideration of IPR fluctuations. It turns out that IPR
variance is of order of 1/g%. Thus the expression (5) is insufficient for our needs
and should be extended to the next order. By the same method we find:

o 2 2a 1 1
=21+ 2 Loa - sy o (5)]

— e 2 2
@] - (2 oy (31 24 5(1
[IZ ] (V> [H s T2 1o 93)

Here the coefficient a; is defined as a; = g¢° Eq P%(g) and is equal to

1 1
b D DI v Suspene )

n
n;20; n3>0

the sum being convergent for d < 4. For quasi ld samples a; = 1/90 and the
found expressions coincide with the results of [16,17].
Thus, we find the following expression for the relative variance of the IPR

distribution: \
(w)]? (w)
I - |I |
§(1y) = ] - (57 f2 10 (l> : (10)

2 2 3

This result demonstrates that for a metallic sample the distribution function of
IPR P(I;) has a form of a narrow peak with a typical width of order of
61?2 x g~ « 1. When g — 0o P(I;) — 6(I —I;) , the result one expects from
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RMT. For the orthogonal and symplectic symmetry cases we find 6(°)(I,) = 32a,/g>
and 6¢P)(I;) = 2a;/g* respectively.

In conclusion, we have studied deviations of the eigenfunction statistical charac-
teristics in a disordered metallic sample from those predicted within the Random
Matrix Theory.
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