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The lowest order radiative correction to the differential cross-section of process of muon pair production
with emission of hard photon at high energy electron-positron annihilation are calculated. Taking into account
the emission of additional soft and hard photon the cross-section can be put in the form of Drell-Yan process
in leading logarithmical approximation. Applying the crossing transformation we obtain the cross section of
radiative electron-muon high-energy scattering process. Virtual and soft photon emission contributions of non-
leading form are tabulated for several typical kinematical points. The limit of small invariant mass of muon

pair is in agreement with our previous analysis.
PACS: 74.50.+r, 74.80.Fp

Process of muon pair production as well as radia-
tive muon pair production at high energy in electron-
positron collisions is commonly used for calibration pur-
poses. This process was investigated in details in Born
approximation in series of papers of Baier and Khoze
[1], where was found mechanism of returning to reso-
nant region.

One of the motivations of our investigation is the high
theoretical accuracy required for description of differen-
tial cross-section. An additional interest appears in the
case of small invariant mass of th muon pair. For this
case the radiative muon pair production is provided by
the initial state hard photon emission kinematics. It can
be used as a calibration process in studying the hadronic
systems of small invariant masses created by virtual pho-
ton. The lowest order radiative corrections (RC) in that
kinematics to Born cross-section as well as the leading
logarithmic (LL) and next-to-leading (NL) contributions
in all orders of perturbation theory (PT) were consid-
ered in our recent paper [2].

Besides the practical applications [3, 4], we pursue
the another aim in this paper. The problem is to check
the validity renormalization group (RG) predictions con-
cerning hard processes of type 2 — 3.

Basing on exact (with power accuracy O(M ﬁ /8)) cal-
culations we confirm the Drell-Yan form of the cross-
section of radiative muon pair production in LL. Estima-
tion of non-leading contributions for several kinematics
points are given as well.

In conclusion we put the cross-section for crossing
processes: radiative electron-muon scattering and muon
pair production by photon on electron in LL.
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1. Born cross-section and RC. In this paper for
the process

etpy)+e (p-) » pt(a) +u (g ) +y(k) (1)

we use the following kinematics:

x+ =2kips, Xi =2kigs, s=(p +ps)°, (2
s1= (- +q4)? t=(-—¢-)°, ti=(p+ —a4)’
u=(p- —q)% w=(py —q)’
pi=m? q =M,
where M (m) is muon (electron) mass. Here all kinem

atical invariants are much larger than muon (electron)
mass, but we take into account terms of order In(M/m):

81~ 8~ —t~ —t] ~—u~ —us ~xt > M >m?
()
s+s1+t+t1 +u+u =0.
The differential cross-section of the process with the low-

est order RC has the form:
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It’s convenient to separate starting from Born level def-

inite contributions from hard photon emission by elec-
tron, muon block and their interference:
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mg = mg + ml + mg‘t,
where [5]
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The standard evaluation of additional soft photon

emission contribution gives [6]:
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and g, ¢4 are the energies (in cms) of electron, muon and
A is ”photon mass”.

Let us now consider RC arising from the Dirac form
factor of leptons and vacuum polarization, (the Pauli
form factor contribution is suppressed in our kinemat-
ics). They are:

A,f,f + Avac =
— M Rep(s_l) + Rell(s;) | +
N mo M? !
2mf + mint s
with [6]
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Here s; is the kinematical invariant s or s;. The con-
tributions from the vacuum polarization from the heavy
lepton 7 and hadrons II7, IT* are given in [7].

2. Calculations of box-type RC.

Consider now amplitudes arising from box-type
Feynman Diagrams (FD). There are twelve FD of such
a kind, or 48 squared matrix elements. In calculation
we restrict ourselves by consideration of only three of
box-type FD. Really the total contribution of interfer-
ence of box-type and Born amplitudes can be expressed
in form:

ReEMuox Mg = (1+ Py)[(1 — P)BE(MZ)* +

+ 1+ P)Be(Mg)*], (12)

with M§ + MY = My, ME(M{')-are electron (muon)
block emission part of the Born matrix element; B¢-is
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the electron emission part of contribution to the box-
type amplitude with uncrossed photon legs (see Fig.1).
Note that calculating the B¢ we must consider the pen-
tagon type FD (see Fig.1b) and two remaining ones (see
FD Fig.1a,c).

+ —

-p q

p 7k ~q"
@ 7 (b) ©

Fig.1. Set of box-type FD used in calculation
The substitution operators P; » work as

P f(py,p—5a+,9-, k1) = flay,q-5p1,p—; —k1);

P2f(p+’p—;Q+aQ—a kl) = f(p-i-vp—; q9-,9+, kl)
(13)

The operator P; “changes” the photon emission from
electron line to muon line. The application of operator
P, permits to obtain the contribution from FD at Fig.1
FD with crossed virtual photon lines. As a result we
obtain:

tt
Apox = —(ps + pa) In — + AF". (14)
uuy

The expression for AN’ is rather cumbersome. The
whole contribution to Ay (which does not contains
large logarithms) would be given in form of the table
below.
3. Vertex-type FD. Let now consider the contri-
bution arising from FD with vertex type insertions V¢
" q —p+ q
M + M |
p (a) q p b 4
_p+ q7 _p+ q7
M + 7 % >~ AN < +
b © P @
Fig.2. Set of vertex FD used in our calculation
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(see Fig.2). The other vertex contributions appear from
this ones by using substitutions.

ReXMyers M§ = (1 + P1)(1 + P3)VE(M§)*, (15)
with operator P; defined as:

P3f(p+ap—; q+,9—, kl) = f@—ap-i-a q+,9—5, kl) (16)
The total answer for vertex-type contribution reads:

1
].me+ Emi

Avert‘, = - [(Ps + L)2 +

2 mo
+2(ps + L) (pa + L) = 3(ps + L) + AYE(s)] —

1my + 3m; 9
—s————|(ps; — L
2 mO [(pl ) +

+2(psy — L)(pr — L) — 3(ps; — L) + AN (s1)]. (17)

4. Master-formula. Extracting the explicate de-
pendence on vacuum polarization in the form 1/|1 — II|2
and collecting the leading and non-leading terms arising
from soft photon emission, vertex and box-type FD con-
tributions, as well as lepton form-factors we arrive to the
formula:

Agofs + Apox + Avers + Aff = Ajead + ANL.- (18)

This expression is free from the infrared singularities as
well as from squares of large logarithms. The form of
Aleaq is consistent with renormalization group prescrip-
tions:

(6] i o S 9
1 “+ ;A]ead = (1 + %ln m—gPA(E)) X

[ 81 o 81

X (1+g lIl WPA(EJF))(]. + % ln WPA(E,)) +

+0(a?), (19)

with Pa being the § part of the kernel of evolution equa-
tion:

Ae 3
PA(E):21H?+§, (20)
Ae 3
PA(Ei) = 21ng + 5.

An additional hard photon emission contribution in
leading logarithmical order can be taken into account us-
ing the quasi-real electron’s method [8]. It results in the
replacement Pa by the whole kernel of evolution equa-
tion of twist 2 operators
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P(z) = PM(2) = lim [Pad(1 — 2) + Po(2)],

1+ 22
1—2

3
PA:2lnA+§, Po(z)=0(1—-A—2) . (21)
As a result we arrive to compact form of the cross sec-

tion:
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and the structure functions D(z, s) having the standard
form [9]:

o S
D.(z,s) =6(1—z) + %P(I)(m) In o B
[ S
D,(y,81) =6(1 —y) + %P(l) (y)In ﬁlz . (23)

The phase volumes entering the left and right parts of
master equation are different:

d®q_ d3qy d3k,
= —r é _—q+—q-—k
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dar
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E:t = z—isi.
Y+

The lower limits of the energy fractions integrations
Tm,Ym are determined by the experiment set-up con-
ditions. The quantity K (so called K-factor) collects all
the nonleading contributions. It has contributions from
virtual, soft and hard photon emission terms. In the
Table below we give its value for typical experimental
points of the considered process keeping all contribu-
tions except ones arising from additional hard photon
emission.

5. Conclusion. Qur consideration was devoted to
the lowest order RC. Nevertheless result obtained re-
veals the lowest order expansion of the structure func-
tions D. So the general Drell-Yan form of cross section

is established, which is valid in all orders of PT. The or-
der of magnitude of nonleading terms can be estimated
from the Table 1:

Numerical estimation of A, part of K-factor
excluding non-leading terms arising from hard
non-collinear photon emission (which depends on
experimental set-ups) and the terms proportional to
In Ae/e, In Ae/ey arising from soft photon emission

N e_ et c_ ct ANL
1 | 059 | 0.66 | 0.29 | -0.06 | 6.77
2 | 0.67 | 0.67 | 0.50 0.30 3.24
3 | 0.68 | 0.65 | 0.69 | -0.50 | 8.68
4 | 0.59 | 0.56 | -0.30 | -0.30 | 8.35

Without additional calculations we can obtain by the
analogy with the result given above the cross section of
crossing process — radiative electron-muon scattering:

e—(p1) + p— (@) = e—(p2) + p—(g2) +v(k1) + (7). (25)

It can be constructed in complete analogy with the Drell-
Yan form of cross section of above considered process
ere_ — [y, using in right hand side as a hard sub-
process the Born cross section:

do'y" o®
. ki) =
T, (P1,q15P2, 92, k1) 1672(prq1) X

X (P1g2)* + (11@1)” + (P201)” + (P222)” W,  (26)

(p1p2)(q142)

with
d3qo dpy d3ky

q20 P20 w1

2
Y41 q1 D2 q2
W=-— + - - ) .
(plkl aki  pki @k

dlepy = 8 (pr+ @1 —p2 — @2 — k1);

(27)

It is worth to note that the value of K-factor for the last
process is not known.

All the 1-loop integrals used of scalar, vector and
tensor types were published in our previous papers [10].
It’s important to note that numerical values of nonlead-
ing terms for process of radiative muon pair production
for the case of small muon invariant mass we find com-
pletely in agreement with the result of our paper devoted
to this kinematical situation [2], where it was calculated
analytically.
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