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The problem of anomalous light tunneling through periodically modulated metal films is examined in a
purely analytical approach. The approach uses large magnitude of the dielectric permittivity of metals in the
visible and near infrared (it is equivalent to that resulting in the Leontovich boundary conditions for semi-
infinite problems). It is shown that the anomalous transparency recently discovered experimentally is caused
by the excitation of single- or double-boundary surface plasmon polaritons due to film modulation. Depen-
dencies of the resonance transparency on parameters of the problem are analyzed in detail, and the optimum

parameters (optimal layer thickness and optimal modulation amplitude) corresponding to extreme values of
the transmittance of both zero and nonzero diffraction orders have been found. Classifying the possible types
of the resonances has allowed identifying special and nontrivial features of the effect. In particular, we predict

strong nonzeroth-order anomalous transparency.

PACS: 42.25.—p, 73.20.Mf, 78.20.—e

Despite the great amount of papers on the photon-
SPP (surface plasmon polariton) transformations in pe-
riodical structures that appeared over the past decades
(it is sufficient to mention [1-3]), the experiment con-
cerning transparency of metal films [4], which is caused
by the effect was realized only recently. Upon this first
observation of the extraordinary optical transmission
through sub-wavelength hole arrays many theoreticians
have contributed to explaining the effect [5—-11]. But
still the qualitative analytical picture of the light tun-
neling phenomenon is uncovered enough. The majority
of the explanations are based upon numerical calcula-
tions (to the best of the author’s knowledge, the only
exceptions are [5, 9], but paper [5] contains only crude
quantitative estimates, while paper [9] deals with the
case of a strictly normal incidence onto the harmoni-
cally modulated film. Moreover, the second spatial field
harmonic was not taken into account in the latter paper
which prevented finding the true position of the reso-
nance). Numerical approaches do not allow obtaining a
deep intuitive insight into the problem.

While the principal channel for anomalous light
transmittance for normal incidence and nonsymmetri-
cal dielectric surrounding is in a non-specular direction,
most papers on the subject examined the zeroth-order
transmittance and reflectivity alone (an exception is the
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recent paper [12]). The nonzeroth-order transmittance
can exceed the zeroth order value of a few tens that of
zeroth-order. This means that the process of light tun-
neling in the case of “single-boundary-localized” (SB)
excitation (when a SPP is localized at one face of the
metal film only) can be in a no less degree effective than
under the “double-boundary-localized” (DB) excitation
(with SPP localized at both sides of the film, see the
experiment of Ref. [13]).

This Letter suggests a thorough new analytical ex-
amination of the effect. We will discuss both the specu-
lar and non-specular transmittance. General results are
obtained both for oblique and normal incidence. Sim-
ple estimates are given for 2D periodic structures and it
is shown that they are similar to such for 1D gratings,
contrary to ascertains of some writers, see Refs. [10, 14].
Our approach also makes it clear that the main reso-
nance effects depend on the existence of the periodic-
ity itself, being rather insensitive to the specific type
of modulation (modulation of the dielectric permittiv-
ity [, 9] or dielectric pillars [6, 12], cylindrical [11] or
square [10] holes, relief corrugations [7]). However the
type of modulation can influence polarization properties
of the periodically modulated film as will be shown in a
future paper.

Let a p (T M)-polarized monochromatic wave (time
dependence of the form exp(—iwt) is omitted) of mag-
netic field amplitude, H?, be incident onto a metal film
surrounded by dielectric media with permittivities &,
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o = =+, from the medium with £_. Let the dielectric
permittivity of the film be periodically modulated along
the z direction, e(z) = e(z + A), and the plane of inci-
dence coincide with the zz plane, see Fig.1. Owing to
the symmetry, only the y — component of the magnetic
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Fig.1. Geometry of the problem. Nonsymmetric dielectric
surrounding of a metal film. A single SB metal-superstrate
first-order resonance, ki, ~ K~ is shown. The circles ®
show that the magnetic field is guided along the y axis

field is not zero. Seeking the solution in the form of a
Fourier-Floquet expansion and taking into account the
radiation conditions, we obtain in the dielectric media

H°(z,2) = 6, H'exp(ik_|,z + ik, )+

+ Z Hy expliky|n, (2 — 0,4-d) + ikno)),

kne = ks + ng, ku\nz =ovesk? —k7,, g=2m/A,
Re,Im{\/eak2 — k,zw} >0, o=4,

where d is the film thickness and H?(z,2) denote field
strengths in the media with the dielectric permittivity
€, 1€, for z > d (2 <0)if 0 =+ (0 = —), respec-
tively.

The solution in the film can be represented as

H(z,z) = H® Z RS (2) expliknoz + okz],

where k = ky/—¢o, Rek > 0, and &¢ denotes some mean
value of £(z) with Regg < 0. For simplicity we will ne-
glect the dependence upon z of the transformation coeffi-
cients (TC) h?(z) here and below. This approximation is
Mucema B AAT® Tom 79
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equivalent to the one resulting in the impedance (Leon-
tovich) boundary conditions for semi-infinite problems,
cf. [15], and takes account of the large dielectric per-
mittivity, |e(z)| > 1, along with assumption of a small
modulation?) | |e(x) — €o| < |eo|- Besides, we neglect
the impact of bulk modulation on the diffraction, that is
the permittivity modulation is taken into account in the
boundary conditions only. An analogous model was first
applied in paper [17] to explaining the Wood anomalies.

Using continuity of the electric and magnetic field
tangential components, we can express the TCs outside
the metal, R, = H,, /H' and T,, = H};,/H', in terms
of the inner TCs, h?,,

Ry =—bn0+ Y ho Tm=) hiexp(cd), (1)

to obtain the following infinite set of linear equations,
cf. Ref. [18],

Y. Dinhy=Vi, o=%,
+

m,o'=

ngr; = [(/80'|n + UIU{O)Jn,m + O'O'IEnfm] X
X [60,— + 60',4- exp(o‘lQ)], V: = 2/6—|06n,05a,—7
ﬂa|n = ka|nz/k5tr1

£(z) = 1/ \% e(z) =& + Zzn exp(ingz), ZO =0

® = kd,

By equating to zero the determinant of diagonal in dif-
fraction order 2 -2 submatrices of the D22 matrix,
Dy, = [|D77 I,

|D,| =d, = bilan—rln exp® — by b7 exp(—2),
we obtain the SPP dispersion relation for the non-
modulated film. In case the spatial field harmonics are
far away from eigenmodes of the non-modulated film

. . !
(non-resonance conditions), the coefficients b7 |n are of

order of unity, |bg"n| ~ |Bysn| ~ 1, whence the esti-
mate for the determinant is |d,| ~ exp ®'. Under the
non-resonance conditions, the matrix D7 is diagonal-
dominated, that is elements of the off-diagonal subma-
trices D77 o &nm for m # n, and hence are small
as compared with that of the diagonal ones, D% . On

2)For an arbitrary film thickness the approximation is certainly
valid under the restriction |e(z) — eo| K 4/|€0|. But this condi-
tion, while being sufficient seems to be far from necessary, as it
follows from comparison with straightforward numerical calcula-
tions, cf. [16]. Evidently, in the limit d — oo the validity condition
is much less restrictive, |e(z) —eo| < |eo|. Moreover, the structure
of the solution obtained is completely analogous to the one for the
film with a corrugated relief, see forthcoming papers.
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the contrary, under the resonance conditions, the deter-
minant of ﬁn decreases by several orders of magnitude.
For thick films, exp(—®') <« 1, and for the determi-
nant to decrease significantly, the condition |bj‘m| <1
or |Bgim| |€o| must hold. As for the diffraction
problem, (3, can posses either purely real or purely
imaginary values only; the minimum of |b+ | (namely,
by mlmin = &) is achieved for B, ), = —iy, which
yields a SPP dispersion relation for the boundary be-
tween the metal and the dielectric half-spaces®). The
magnitude of the determinant at this point is |dp| ~
~ &l exp ®'. Denoting the resonance diffraction orders
as r, 7', etc., and the set of the resonance orders as R,
we can write the resonance condition as Im(bjlr) ~ 0,
or in a more explicit form,

Ve—sin@+re~7K°, k=g/k, T=4=,
(2)
K° =1\/e, + 28 ~ \Je,, exp(—®') < 1.

Evidently, equation with 7 = +(—) corresponds to the
forward (backward) direction of SPP propagation rela-
tive to the incident wave; 0 = —(+) corresponds to SPP
excitation at the metal- superstrate (substrate) interface.
Analogously, the condition |b"| ~| > |éo| defines the
nonresonance subset of diffraction orders, A/, where the
integers, belonging to AV, are denoted as, N, M, etc. Ac-
cordingly, the matrix Dis decomposed into four subma-
trlces with resonance (nonresonance) diffraction orders,
= ||ID7% l ( ||DNN,||)' and two mixed matri-
ces, U = ||D ‘I, and L = |D2||. The correspond-
ing right-hand sides have been denoted @ = ||V;7|| and
v = ||VF||. Decomposing the submatrix M= |D% I
into a block-diagonal and a nondiagonal matrices, we
have

— ~ A ~.

M=A4(1-9), A%y =0nuD%y, 7 =0(E),

where the norm of the matrix 7 is small as its ele-
ments are proportlonal to the small modulation ampli-
tude, ¥ ~ £. Then M~! = "% D*A~1. As aresult, we
can solve the nonresonance subsystem for h%, N € N,
in an explicit form as ||h%|| = M-1 (v ~-I ||h"||) and
represent the resonance subsystem as

§:~aa o’ o
rr! Top! _V

r',o'

rnr' €R, (3)

where || Dzg || = R— UM 'L, ||[V7|| =@ - UM 5.

3)For thin films the dispersion relation changes essentially. If
€4 = e_ and |®| < 1, there are two very distinct resonance
points, 8, ~ —2i¢(/ /&' and Br ~ —if[ ®' /2, see Ref. [19].

For further analytical treatment we will consider this
solution in the main approximation, taking into account
the terms linear in E, in 17;’ and quadratic terms in
~;‘;’,I. In this approximation it is sufficient to restrict

the analysis by the zeroth order term in the series ex-
pansion M~! = A=1 + O(¢). Then

72 =Dy 40 Y & nEn-mdytlay —aite”?),
N
Ve =260 (6000 ~Edo'a ), (&)
& = boa [b;lNe(I> + b;\Ne_ﬂ ~ 205,05 N-

Here 0 = —0, 0,00 = 1 — 6551

All the external TCs of Eq. (1) are expressed in terms
of the inner TCs with resonance indices, hZ. Thus, the
solution of the resonance diffraction problem reduces to
that of the resonance subsystem, Eq. (3). For instance,
in the main approximation,

Ty =6noTy — Y oo'dy' x

r,0,0'

x |07 v expl(o” + 0)®] + b7 ] En—rh
Ry =6noR§ — Y oo'dy' x

r,0,0'

[b |Nexp(a ) + b7 |Nexp(E<I>)] ENfrh:',

(5)

where R} and 7] are the well-known transmittance and
reflectivity coefficients corresponding to the nonmodu-
lated film.

The energy flux in the dielectrics is determined by
the energy TCs, giving a ratio of the z- components of
the corresponding Poynting vectors to that of the inci-
dent wave,

. Re(/@—|m)
B-jo ’
When considering the simplest resonance (|d,| <

< 1 for the unique number r, in view of the condition

|b:|r| < 1 for one or simultaneously both values of o, the
latter can hold for e_ = ;) the resonance subsystem,

(3), includes two equations for two main Fourier field

amplitudes, h;} and h, . The solution presented permits

easy numerical calculations for films of arbitrary thick-
nesses, but to achieve a better insight into the problem
and having comparison with the experiment in mind, we

concentrate on the results for thick films, exp(—®') <« 1.

In the framework of the approximation (4) we obtain

from Eq. (3)

20&

T

Pm = |RM|2

he = 220 [, By + (05, +26.,) e %], (©)
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where
E’I‘ = 5—}-\1‘5—\7‘ - b_7_|7.b:|1.e_2q>7

ﬁo’h‘ = /80'|T + £0 + Z (Z:__Nv am = —ng—m . (7)
N

o|N

Assuming absorption to be small, &) < |&f'|, we restrict
ourselves to modulation of the imaginary part of £ only.
Then a;, = |€n|?. The denominator, d,, retains con-
tributions of first-order resonance-to-nonresonance scat-
tering processes and vice versa. The processes involving
inhomogeneous waves result mainly in a shift of the reso-
nance, while those involving homogeneous ones give rise
to the widening. Also, consider the TC for the rth dif-
fraction order. As will be seen below, it may be of great
interest for the SB resonance, since with €, # e_ the
corresponding Fourier field component may represent an
outgoing wave in one of the half-spaces. Using Eqgs. (6)
and (1), and considering a quasi-harmonic modulation,
|EN|$|€4r |, we have

28, ~
T, = Ei [Byr+ 0%, +26 )+

+ (b;lr + 2,3_|T) e*m] e ®.

The specular coefficients can be simplified as

ARy ~ — 2ar. [EHT + (48_ 1, +2B4r) e‘”’] ,
ﬂ—|0dr (8)
ATy ~ % (B_r + & + Bipr)

where ARy = (Ro— R{')/R{ and ATy = (To—-T¢) /T -
We neglect £ in comparison with 3;o, which is valid for
not too grazing incidence.

Let examine an essentially nonsymmetric situation,
where the resonance condition is fulfilled for a sole num-
ber r and a fixed sign of o, |3,|,| < 1,i. e. a SPP mode
is excited at the one of metal-dielectric interfaces. While
being the simplest example of SPP excitation, it may
provide a very non-trivial light transmission. We choose
the case of the metal-superstrate resonance, ¢ = —. Es-
timating the values |3,,| in the resonance vicinity as
|B-1] =~ |&| and [B4|,| ~ 1 (see the discussion above
Eq. (2)), we have for the minimal magnitude of the de-
nominator d,

|dr lmin = & + ar + O(e™*"). (9)
ar
Ty 1ATol
|€0l(&5 + ar)
increases with an increase of a, to become of order one
for the modulation amplitude a, ~ £y|&|. The zeroth-
order transmittance exhibits a saturation for a,2§),

Then Eq. (7) results in |ATp| ~

Mucema B MAT® Tom 79 BBIm. 11-12 2004

see Fig.2, at the level |To|max ~ |&o| |7y |, being en-
hanced by the factor |§|~! as compared with |T§| ~
4|&|exp(—®') <« 1. The maximal zeroth-order trans-
mittance 79 at ® = 3 (three skin-depths) is about sev-
eral percent (for || ~ 0.1), while in the experiment of
Ebbesen et al. the maximal transmittance was about
several percent for ' = 7. Such an increase appar-
ently may be due to different reasons: first, it is evident
that the validity of all above formulas is restricted by
the smallness of the modulation amplitude, and there-
fore we cannot suggest a rigorous estimate of the effect
for hole array. Second, while measuring the transmitted
light intensity in the experiment, the detector could fully
register not only the zeroth-order channel, but other ho-
mogeneous outgoing channels as well (the details con-
cerning position of the detector have not been reported,
in spite of this being an essential point, hence we cannot
make a positive judgement). Note that in spite of the low
transmittance, the reflectivity may have deep resonance
minima, and they appear to be better pronounced in the
case of SPP excitation at the front surface (o = —) than
at the back (o = +) which follows directly from Eq. (8)
for |3_|,| < 1 and |B4),| < 1, respectively, cf. also [8].

The transmittance can be increased in two possible
ways. One is to adjust the parameters so that excitation
of a DB SPP should exist, see below. The other relates
to the specific case when the diffraction order of a SPP
excited at one of the interfaces corresponds to a prop-
agating wave in the opposite-side dielectric half-space,
and we arrive at “nonzeroth-order, plasmon enhanced
light transmittance”. Consider the latter case in some
detail.

Let a light wave be incident from the dielectric of
lower optical density, e_ < €4, and the diffraction order
r correspond both to the homogeneous outgoing wave
in the substrate and the SB SPP on the front interface,
see Fig.1 for r = 1. In Fig.2 the py minima and 7,
To maxima, correspond to excitation of a SPP; 7y pos-
sesses typical Fano profile. The rth-order transmitted
wave becomes the principal channel for light tunneling,

resulting in T} ~ 4¢, exp(—®)/ [E_‘T + 2&o exp(—2<I>)].

Since E—Ir includes a term proportional to [£,|2, there
exists an optimal modulation depth, a, = asps ~ &,
corresponding to the highest transmittance (see Fig.3):
Trlmax ~ &) ' exp(—2®') exceeds the maximum value
of 79 by the factor 56_1. This value of a, differs only
weakly from that corresponding to a totaly suppressed
specular reflection for the case of diffraction at the in-
terface between the metal and dielectric half-spaces, see
[20]. This result is universal for different metals if we
renormalize the modulation amplitude using its charac-
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Fig.2. A single nonsymmetric metal-superstrate SB resonance for a sinusoidal grating. Dependences of homogeneous wave
TCs on the angle of incidence, A§ = 6§ —6;, 6; = 60°, for incidence from air onto an Ag film on the quartz substrate, e, = 2.31.
Wayvelength A = 1.06 um (&0 = —0.133i+0.00071), spacing A = 7.41 ym (k = 0.143), film thickness d is shown in skin-depths,
Ei1 = 1.53i4/€). The arrows in 7o and po indicate the Rayleigh anomalies (branchpoints 3_|; = 0)

teristic value, 1/&j, so that w = |ET| /4/& and wept ~ 1.
A close-to-total light transmittance, 7. ~ 1, takes place
for film thicknesses of order ®' ~ [In§;| /2, see Fig.3.

A strong nonzeroth-order anomalous transmittance
also can occur under the condition that the zeroth-order
wave in the substrate is inhomogeneous (e > e, cf.
Kretshmann geometry, [19]). Then for such an an-
gle of incidence with which the zeroth diffraction or-
der corresponds to SPP excitation on the far interface,
E—sinf ~ K, the Nth order diffracted waves with
|y/€_sinf + Nk| < \/ey, N <0, k < 2,/&; are homo-
geneous ones. The corresponding T'Cs can become of the
same order as the 7;. of the previous case. Besides, for a
long-spacing nonharmonic grating, £ < /5, the trans-
mitted energy flux is redistributed between these dif-
fraction orders in accordance with the Fourier spectrum
of the grating. The first observation of this effect (in the
simplest case and for a dielectric grating deposited on
the metal film) was reported in paper [12].

Let us briefly discuss more complicated SPP reso-
nances. Along with the resonances related to the exci-
tation of one SPP, double and fourfold resonances can
occur under some specific conditions, which result in
complex spectral and angular dependencies and in ad-
ditional enhancement of the transmittance peaks (re-
flectance dips). Recall that for given values of ,, the
period A, the resonance condition of Eq. (2) defines a
resonance curve in the A—6 (vacuum wavelength and an-
gle of incidence) in the region —, /e~ < K°—7rk < \/E_,
which is enumerated by three numbers, o, 7 and the in-
teger r. Then for a fixed 6 (and a fixed period) there is
a specific value of the wavelength and vice versa, for a
fixed A there is a specific value of angle of incidence cor-
responding to SPP excitation. In the generic case these
curves corresponding to different values of r and o do

not intersect. Then we arrive at a single SB resonance
(SBS).

Under specific conditions different resonance curves
may intersect. An intersection of two curves specify
the values of k and @ corresponding to a double reso-
nance. If these curves correspond to equal o (and two
different resonance orders, 7' # r), then a simultaneous
excitation of two SPPs on one of the interfaces holds.
These SPPs are coupled due to the periodicity, and we
arrive at a double SB resonance (SBD). SBDs do not
essentially enhance the peak transmittance magnitudes
(reflection minima) as compared with the single reso-
nance, however result in complex wavelength and an-
gle of incidence dependencies. Specifically, the inter-
resonance modulation amplitude, &,_,, can strongly ef-
fect the resonance behavior even for small magnitudes of
order > &) (cf. Ref. [20], where a comprehensive exam-
ination of such resonances is performed for diffraction
on metal-dielectric interfaces). Note that for symmetric
film surroundings, ¢4 = €_, we arrive at the fourfold
resonance.?)

An essential enhancement of the transmittance can
be achieved during simultaneous excitation of SPPs on
both interfaces, coupled due to the finite film thickness,
i.e., when a double DB resonance (DBD) occurs. This
corresponds to the intersection of two curves with dif-
ferent 0. Egs. (6)—(8) describe the symmetric DBD as
well, and the transmittance enhancement is caused by
the fact that the minimal magnitude of the resonance

4)The fourfold DB resonance (DBF) can also exist under the
condition that the ratio of the refraction indices of the surround-
ing dielectrics (or, more exactly, the values of K+ and K ™) is
equal to that of two integers resulting in simultaneous intersec-
tion of four resonance curves. Note that the threefold resonance
is impossible.
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Fig.3. Modulation amplitude and film thickness dependen-
cies of the transmittance and reflectivity (for d = 2, in
terms of skin-depths § = (k|¢0])~!, and for w = 1.53,
Eﬂﬂ = 1w4/&}), corresponding to a nonsymmetric, single
metal-superstrate SB resonance. The angle of incidence is
0 = 60°, other parameters are the same as in Fig.2

denominator, ET, is squared in comparison with Eq.
(9) while the nominator does not decrease like in the
case of a SBD resonance. The greatest relative change
of the zeroth-order transmittance is of order |AT,| ~
~ |§r|2/|dr|min ~ |§r|2(§(l)+|§r|2+- . -)_2- Therefore, the
zeroth-order transmittance (along with reflectance and
absorbance) anomalies are expressed much stronger for
the DB resonances. This fact is in agreement with ex-
perimental data and numerical calculations for normal
incidence, cf. Refs. [13, 6]. The detailed analysis (to
be published elsewhere) for this specific case is in agree-
ment with results for harmonic modulation presented in
the theoretical paper [9] (up to the shift of the resonance
peak and dip positions due to scattering processes in-
Mucema B MIAT® Tom 79
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volving second order inhomogeneous diffracted waves,
which we take into account).

The approach developed allows a natural general-
ization to 2D periodic structures, cf. [21] for the half-
space problem. The main difference consists in the
fact that we have to appeal to a 2D Fourier expan-
sion, §(r) = Enl,nz Ening exp[(inlgl +in1g1)r]7 o0 =0,
where r = (z,y) and gy, g» are reciprocal vectors relat-
ing to minimum translations of the reciprocal lattice.
Similar changes need to be performed for the Fourier-
Floquet expansion of the electromagnetic field. Con-
sequently, a resonance enhancement of the transmit-
tance can be caused by excitation of a SPP in any
diffraction order, now numbered by a pair of integers
(r1,72)- The approximate resonance condition reads
as [k; + rig1 + r2g2| ~ KT, where k; is the tangen-
tial component of the wave vector of the incident wave,
k| =k sinf = wc !,/e_sin6.) The resonance con-
tribution to the TCs depends on the incident polariza-
tion and orientation of the SPP excited. Specifically, it
depends on the angle ¢ between the SPP propagation
direction relative to the incident plane. No data on the
polarization of the incident and transmitted light are
given in the majority of experimental works (like the in-
formation concerning orientation of the incidence plane),
exceptions are Refs. [14, 22]6). Therefore, in the generic
geometry we can obtain a nontrivial transformation of
the polarization of the zeroth-order transmitted wave,
similar to that discussed for the resonance reflection, cf.
[23, 24]. Simple estimates for the magnitudes of these
coefficients are analogous to that presented above for the
1D grating.

We have shown that the principal point for the light
tunneling enhancement is the existence of well-defined
surface modes (SPPs) at the interfaces. A great effect
can be caused both by the zeroth-order transmittance
(which has been observed experimentally and discussed
theoretically) and other diffraction orders as well. The
latter may exceed the zeroth-order transmittance, 79, by
factors about §(’]_1 in case of SB resonance, while both
zeroth- and nonzeroth-order transmittances under DB
resonance diffraction on nonharmonic grating may be
comparable.

5)In the majority of experimental works devoted to the prob-
lem, the double periodicity is realized by square hole arrays (i.e.,
(81-82) =0, g1 = g2).

6)Simple calculations show that the zeroth-order TC angle de-
pendence with (without) change of polarization can be approxi-
mated to sin 2¢ (cos? ) for the impedance modulation. For the re-
lief modulation it is necessary to change the angle ¢ to v, where ¥
is the angle between the incident plane and the vector r1g1 +72g2.
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The analytical approach has allowed us to perform a
transparent analytical treatment and identify the role of
different parameters. It shows as trivialities some results
which seem non-trivial within other approaches. While
the modulation is supposed to be small, it is in a sense
arbitrary (defined by an arbitrary Fourier expansion),
in contrast to numerical calculations where the spectral
composition of modulation is fixed.
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