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Qubit decoherence by Gaussian low-frequency noise
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We have derived explicit non-perturbative expression for decoherence of quantum oscillations in a qubit
by Gaussian low-frequency noise. Decoherence strength is controlled by the noise spectral density at zero fre-
quency while the noise correlation time 7 determines the time ¢ of crossover from the 1/+/¢ to the exponential
suppression of coherence. We also performed Monte Carlo simulations of qubit dynamics with noise which

agree with the analytical results.
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Despite the large number of successful demonstra-
tions of coherent quantum oscillations in individual [1 -
8] and coupled [9] Josephson-junction qubits, quantita-
tive understanding of these oscillations is so far limited.
The main area of discrepancy between experiment and
theory is qubit decoherence. The typical quality factors
of reported oscillations, while not as large as required
by potential applications in quantum computation, are
still quite large in physics term (typically not less than
20 + 30). This fact should imply weak decoherence de-
scribable by the standard perturbation theory in qubit-
environment coupling (see, e.g., [10]). Several basic fea-
tures of this theory, however, do not agree with experi-
mental observations. Most importantly, observed decay
time T» of coherent oscillations is typically shorter than
the energy relaxation time 7} even at optimal qubit bias
points [4, 3, 11] where perturbation theory predicts no
pure dephasing terms. Another discrepancy is between
the observed two-qubit decoherence rate [9] and its val-
ues that can be obtained from the perturbation theory
under natural assumptions [12].

Qualitatively, the basic reason for discrepancy be-
tween 17 and T, is the low-frequency noise that can
reduce T> without changing significantly the relaxation
rates. Mechanisms of low-frequency, or specifically 1/ f,
noise exist in all solid-state qubits: background charge
fluctuations for charge-based qubits [13], impurity spins
or trapped fluxes for magnetic qubits [14]. Manifesta-
tions of this noise are observed in the echo-type exper-
iments [11]. Low-frequency noise for qubits is also cre-
ated by the electromagnetic fluctuations in filtered con-
trol lines.

The goal of our work is to develop quantitative the-
ory of low-frequency decoherence by studying qubit dy-
namics under the influence of Gaussian noise with small
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characteristic amplitude vy and long correlation time
7. In this case, we obtained explicit non-perturbative
expression describing decay in time of coherent qubit
oscillations. The strength of decoherence in this ex-
pression is controlled by the noise spectral density at
zero frequency, S, (0) o< va7. For long correlation times
7> A~1 where A is the qubit tunnel amplitude, vZ7
can be large even for weak noise vg < A and our ana-
lytical results are exact as function of v37 in this limit.
We also performed direct numerical simulations of the
low-frequency qubit decoherence. The simulation results
confirm analytical expressions and show that our main
conclusions: cross-over from the 1/+/¢ to the exponential
suppression of coherence at time ¢t ~ 7; and the strength
of decoherence controlled by the noise spectral density
S»(0) at zero frequency, are valid for quite large noise
amplitudes v.

The Hamiltonian of a qubit with a fluctuating bias
energy v(t) (see inset in Figure) is:

H= —%[Aaz + (e +v(t)o], (1)

where € is the average bias, and ¢’s here and below de-
note Pauli matrices. In this work, we mostly focus on
the situation when the noise v(¢) has characteristic cor-
relation time 7, i.e., the noise correlation function and
its spectral density can be taken as

2
25T

(Wt (t) = vie 1T Sy (w) = T ()2’

(2)
where vg is the typical noise amplitude and (...) denotes
average over different realizations of noise. We assume
that the temperature T' of the noise-producing environ-
ment is large on the scale of the cut-off frequency 1/7,
and it can be treated as classical. In the regime of in-
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The rate v of exponential qubit decoherence at long times
t > 7 for € = 0 and noise with characteristic amplitude vo
and correlation time 7. Solid line gives analytical results
from Eq. (8). Symbols show v extracted from Monte Carlo
simulations of qubit dynamics. Inset shows schematic dia-
gram of qubit basis states fluctuating under the influence
of noise v(t)

terest, 1/7 < A, the temperature can obviously be still
small on the qubit energy scale.

The two effects of the weak noise on the dynamics
of the qubit (1) are the transitions between two energy
eigenstates with energies +£0/2, Q = (A? + ¢2)'/2, and
“pure” (unrelated to transitions) dephasing that sup-
presses coherence between these states. Within the stan-
dard perturbation theory, the transition rate is propor-
tional to S, (Q2) = 2v2/Q27. One can see that the con-
dition of weak noise vy < A makes the transition rate
small compared both to A and 1/7 ensuring that the
perturbation theory is sufficient for the description of
transitions. As discussed qualitatively in the introduc-
tion, the fact that the noise correlation time is long,
7> A~!, makes the perturbation theory inadequate for
the description of pure dephasing. For low-frequency
noise, a proper (non-perturbative in v37) description is
obtained by looking at the accumulation of the noise-
induced phase between the two instantaneous energy
eigenstates. If vg <€ A, one can determine the rate
of accumulation of this phase by expanding the ener-
gies in noise amplitude v(¢). Also, in this case the de-
phasing rate is larger than the transition rate and can
be calculated disregarding the transitions. The factor
F(t) describing suppression in time of coherence be-
tween the two states (i.e., suppression of the off-diagonal
element p;a of the qubit density matrix in the energy

basis: p12(t) = F(t)p12(0)e~**) can be written then as
follows:
A202(#)

L2 )

P = (i [ 15+

For Gaussian noise, the correlation function (2) de-
termines the noise statistics completely, and it is con-
venient to take the average in Eq. (3) by writing it as
a functional integral over noise. For this purpose, and
also for use in the numerical simulations, we start with
the “transition” probability p(vy,vs, §t)[15] for the noise
to have the value v, a time 0t after it had the value v;:

p(’Ul,’Uz,t) =
1 (1)2—1}167&/7)2
2 —25t/7Y]-1/2
273 (1 — e20%/7)] /eXP{—ﬁw}-(‘i)
Using this expression we introduce the prob-
ability of specific noise realization as po(v1)

p(v1,va,0t1) - p(va,vs,dtz) - ..., where po(v) =
(2mvd) /2 exp{—v?/2v}} is the stationary Gaussian
probability distribution of v. Taking the limit dt; — 0
we see that the average over the noise can be written as
the following function integral:

v(0)? + v(t)?
42 B

1 ¢ 1(,2:2 2
—W/O’dt(’rv +U) . (5)

Since the average in Eq. (3) with the weight (5) is now
given by the Gaussian integral, it can be calculated
straightforwardly:

(...):/dv(O)dv(t)Dv(t’)...exp { _

F(t) = Fy(t) exp [—a2 (”; — 9[coth ; + u]_l)] , (6)

+12

Fy(t) = e/*"[cosh(vt/T) + ! sinh(vt/7)]~1/?,

14

where v = /1 + 203 A27/Q3 and a = eTvo/W3/2.

Equation (6) is our main analytical result. To an-
alyze its implications, we start with the case ¢ = 0,
where pure qubit dephasing vanishes in the standard
perturbation theory. Dephasing (6) is still non-vanishing
and its strength depends on the noise spectral density
at zero frequency S,(0) = 2v37 through v = /1 + s,
s = S,(0)/A. For small and large times ¢t Eq. (6) sim-
plifies to:

1+¢t/7 1/2
Y , LT,
Fit)= 1+t/7+ist/27 (7
2/ve~ Ot (1L v), t> T,
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where

1
7_27'

((1+32;I/2+1>1/2_1] ®

Besides suppressing coherence, the noise also shifts the
frequency of qubit oscillations. The corresponding fre-
quency renormalization is well defined for ¢ > 7:

1/2

s L [(1 + 82)1/2 — 1]

=5 5 9)

Suppression of coherence (7) for t < 7 can be qual-
itatively understood as the result of averaging over the
static distribution of noise v. In contrast to this, at
large times t > T, the noise appears to be §-correlated,
the fact that naturally leads to the exponential decay
(7). This interpretation means that the two regimes of
decay should be generic to different models of the low-
frequency noise. Crossover between the two regimes
takes place at ¢ ~ 7, and the absolute value of F(t)
in the crossover region can be estimated as (14 s2)~1/4,
i.e. s determines the amount of coherence left to decay
exponentially. The rate (8) of exponential decay shows
a transition from the quadratic to square-root behavior
as a function of S, (0) that can be seen in Figure, which
also shows the decay rate extracted from numerical sim-
ulations of Gaussian noise. Our numerical procedure
was based on direct Monte Carlo simulations of coher-
ent oscillations of a qubit with Hamiltonian (1) that start
in one of the eigenstates of the o, operator. The qubit
density matrix was averaged over up to 107 realizations
of noise that were built using the transition probability
(4). The rate v of pure dephasing was extracted from
the long-time behavior of the off-diagonal element of the
density matrix by subtracting the transition-induced de-
phasing rate S, (A)/4 = vZ/(2A27) from the total oscil-
lation decay rate. One can see from Figure that analyti-
cal and numerical results agree well for quite large noise
amplitudes v.

Non-zero qubit bias € leads to additional dephasing
F(t)/Fy(t) described by the last exponential factor in
Eq. (6). The contribution from Fp(¢) is of the same form
as in € = 0 case but now with s — s(A/Q)3. Similarly
to Fo(t), the additional dephasing exhibits the crossover
at t ~ 7 from “inhomogeneous broadening” (averaging
over the static distribution of the noise v) to exponential
decay at ¢ > 7. In contrast to the zero-bias case, the
short-time decay is now Gaussian:

]__i vat? /2, t T,
Ft)' Q2 vart/(1+is(A/Q)3), t>T.
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We see that, again, the rate of exponential decay de-
pends non-trivially on the noise spectral density S,(0),
changing from direct to inverse proportionality to S, (0)
at small and large s, respectively.

Our approach can be used to calculate the rate of
exponential decay at large times ¢ for Gaussian noise
with arbitrary spectral density S,(w). Such a noise can
be represented as a sum of noises (2) and appropriate
transformation of variables in this sum enables one to
write the average over the noise as a functional integral
similar to (5). For calculation of the relaxation rate at
large ¢, the boundary terms in the integral (5) can be
neglected and it is dominated by the contribution from
the “bulk” which can be conveniently written in terms
of the Fourier components

¢
Up = (2/t)1/2/ dt'v(t') sinw,t', w, =mn/t.
0

Then, (..) = [Do..exp{—(1/2), |val?/Sv(wn)}-
Combining this equation and Eq. (3) we get at large
t:

_ t] &208,(0)
o =ew{ - a5 is 0

+%Awmmuwawmwmﬂ} (10)

For unbiased qubit, £ = 0, this equation coincides with
the one obtained by more involved diagrammatic per-
turbation theory in quadratic coupling [16].

In summary, we developed non-perturbative theory
of qubit dephasing by Gaussian low-frequency noise and
performed Monte Carlo simulations of qubit dynamics
with this noises. The theory agrees well with simulations
and shows that the decoherence strength is controlled by
the noise spectral density at zero frequency. It allows
for generalizations in several experimentally-relevant di-
rections and should be useful for analysis of observed
shapes of quantum qubit oscillations.
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