Pis’ma v ZhETF, vol. 80, iss. 1, pp.67-71

© 2004 July 10

Continuous time quantum Monte Carlo method for fermions:
beyond auxiliary field framework

A.N. RubtsovtV), A.I Lichtenstein*')

+ Physics department, Moscow State University, 119992 Moscow, Russia

* Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany

Submitted 23 May 2004

Numerically exact continuous-time Quantum Monte Carlo algorithm for finite fermionic systems with non-
local interactions is proposed. The scheme is particularly applicable for general multi-band time-dependent
correlations since it does not invoke Hubbard—-Stratonovich transformation. The present determinantal grand-
canonical method is based on a stochastic series expansion for the partition function in the interaction rep-

resentation.

The results for the Green function and for the time-dependent susceptibility of multi-orbital

super-symmetric impurity model with a spin-flip interaction are presented.

PACS: 02.70.Ss, 71.10.Fd, 71.27.4+a

Quantum Monte Carlo (QMC) tools for fermionic
systems appeared more than 20 years ago [1—4] and
are nowdays vital for a wide range of fields, like the
physics of correlated materials, quantum chemistry and
nanoelectronics. Although the first programs were de-
veloped for model Hamiltonians with local interaction,
many-particle action of a very general form stays be-
hind the real systems. For example all matrix elements
of the interaction do not vanish in the problems of quan-
tum chemistry [5] and solid state physics [6]. Dynam-
ical mean-field theory (DMFT) [7] for correlated ma-
terials brings a non-trivial bath Green function on the
scene, and its extension [8] deals with an interaction
which is non-local in time. An off-diagonal exchange
term can be responsible for the correlated superconduc-
tivity in doped fullerens [9]. It is worth to note in gen-
eral that exchange is often of an indirect origin (like
super-exchange) and the exchange terms are therefore
retarded. New developments [10] clearly urge an inven-
tion of essentially different type of QMC scheme suitable
for non-local, time-dependent interaction.

The determinantal grand-canonical auxiliary-field
scheme [1-4] is commonly used for the interacting
fermions, because other known QMC schemes (like sto-
chastic series expansion in powers of Hamiltonian [11]
or worm algorithms [12]) suffer an unacceptably bad
sign problem for this case. Two points are essential
for the approach: first, the imaginary time is artifi-
cially discretized, and then the Hubbard—Stratonovich
transformation [13] is performed to decouple the fermi-
onic degrees of freedom. After the decoupling, fermi-
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ons can be integrated out, and Monte Carlo sampling
should be performed in the space of auxiliary Hubbard—
Stratonovich fields. Hirsh [3] proposed to use discrete
Hubbard-Stratonovich transformation to improve the
original scheme; this is now a standard method for sim-
ulations of lattice and impurity quantum problems. For
relatively small clusters, and in particular for DMFT,
the sign problem is not crucial in this method [14]. The
number of auxiliary field is linear (quadratic) in the num-
ber of atoms for the case of local (nonlocal) interaction.

The time discretization leads in a systematic error
of the result. For for bosonic quantum systems, con-
tinuous time loop algorithm [15], worm diagrammatic
world line Monte Carlo scheme [12] and continuous time
path-integral QMC [16] overcame this issue. Recently
a continuous-time modification of the fermionic QMC
algorithm was proposed [17]. It is based on a series
expansion for the partition function in the powers of
interaction. The scheme is free of time-discretization
errors, but the Hubbard—Stratonovich transformation is
still invoked. Therefore the number of auxiliary fields
scales similarly to the discrete scheme. This scheme is
developed for local interaction only.

Besides the time-discretization problem, the non-
locality of interaction hampers the calculation in the ex-
isting schemes, because it is hard to simulate systems
with a large number of auxiliary spins. Further, the dis-
crete Hubbard—Stratonovich transformation is not suit-
able for non-local in time interactions. One needs to use
continuous dispersive bosonic fields [8] for this case, that
makes the simulation even harder.

In this Letter we present a novel numerically ex-
act continuous-time fermionic QMC algorithm. This
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is the first QMC scheme that do not invoke any type
of Hubbard—-Stratonovich transformations and therefore
operates natively with non-local in space and time in-
teractions. The scheme is free of systematic errors due
to direct operations with continuous time expansion of
the partition function. Numerical results for a super-
symmetric two band impurity model with spin-flip, time
dependent non-local interactions show an advantage and
a broad perspective of proposed QMC scheme for the
complex solid-state and quantum chemistry problems.

We consider a fermions system with pair interaction
in the most general form and present the partition func-
tion Z = Tr{T exp(—S)} in the terms of the effective
action S:

S=5+W= // t:lcl,crdrdr' + (1)

s

Here T is a time-ordering operator, r = {i,s,7} is a
combination of the discrete index ¢ numbering the single-
particle states in a lattice, spin index s =1 or | and the
continuous imaginary-time variable 7. Integration over
dr implies the integral over d7, and the sum over all lat-
tice states and spin projections: [dr = Y. >, fo dr.
We borrow the linear-algebra style for sub- and super-
scripts to make the notation clearer. The creation (cf)
and annihilation (¢") operators for a fermion in the state
r are labelled as covariant and contravariant vectors, re-
spectively. The labelling for coeflicients ¢,w is chosen
to present all integrands like scalar products of tensors.
An additional quantity «f, is introduced for the most
effective splitting of S to the Gaussian part (So) and
interaction (W). The parameters af, are to be chosen
later to optimize the algorithm and to minimize the sign
problem.

We consider Sy as an unperturbed action and switch
to the interaction representation. The perturbation-
series expansion for Z has the following form:

7Z = Z/drl/dri.../dr'zkﬂk(rl,ri,...,r’zk),
k=0

T2h ITZhD’I‘l’I‘z 1‘21,
T2r—1T2k

riN(at ar2 T2 ! ’
—a,; ) (cT,2 c aré)drl dridredry.

(2)
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where Zj is a partition function for the unperturbed sys-
tem and

“Ton’
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(3)

Hereafter the triangle brackets denote the average over
the unperturbed system, (4) = Z; 'Tr{T A exp(—So)}-

Tl

Since the action Sy is Gaussian, one can apply the Wick
theorem and find the expression for D in terms of a de-
terminant of 2k x 2k matrix:

DI = det ||g
2k

7‘17'2.. ..

i — ot || (4)
J J

Here g7, =< Tcr,cr > is the the single-particle two-
point Green function in the QMC notation and J;; is a
delta-symbol.

In the following we use an important-sampling
Markov process in the configuration space, where the
points are determined by the perturbation order k and
the set {ri,r{,...,75;}. Suppose for a moment that
is always positive, and consider a random walk with
a probability of Z 'y (ry, 7, ..., 2k, 7h;,) to visit each
point. Denote the average over this random walk by
the overline. Then for example the Green function
", = Z7' < Tcl,e"e™™ > can be expressed as
9% (ry,ry, .., rhy,) where g7, determines the Green func-
tion for a current realization. It is important to note
that a Fourier transform of g;, with respect to time ar-
guments can be found analytically. Therefore the Green
function can be calculated directly at Matsubara fre-
quencies. Such an approach has an advantage over the
calculation in 7-domain, because it automatically takes
into account the invariance of the initial action in the
translations along 7-axis. Higher-order correlators can
be calculated in the same way. More detailed description
of the algorithm as well as methodological discussion can
be found in Ref. [18].

In certain cases proper choice of o can indeed com-
pletely suppress the sign problem. For example, for
Hubbard model it is reasonable to choose aift,
= 0307710405 . If the Gaussian part of action does not
rotate spins, than g5, o« dss, and the determinant in
(4) is factorized: D = D4+D,. For the case of Hubbard
model with attraction one should choose oy = o = a,
where a is a real. For this choice gi = gi , and conse-
quently D4+ = D,. All terms of are positive in this case,
because w < 0.

The choice of oy = a is useless for a system with re-
pulsion, because the alternating signs of Qj, with odd and
even k appear [19]. Similarly to the discrete Hubbard—
Stratonovich transformations [4], the particle-hole sym-
metry can be exploited for a half-filled system. One can
show that a choice a4 =1 — a = « delivers a condition
D, = —D| for this case, thus eliminating the sign prob-
lem [18]. Further, for a particular case of an impurity
problem in the atomic limit ay = 1—a; = a witha >1
or o < 0 eliminates the sign problem for the repulsive
interaction at any filling factor [18].

Summarizing up these observations, we can write a
draft recipe of how to choose a. For a physically reason-
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able split of the action 1 the value of a should not be too
large. Therefore for the diagonal repulsive terms of the
interaction matrix we propose to use ay =1 —a; = «
with «a slightly above 1. For the attractive interaction,
and for the off-diagonal matrix elements of w, the choice
should be ay = oy ~ 0.5. Of course, in a general case
Q is not positive-defined and one needs to work with its
absolute value in QMC sampling. In this case an ex-
ponential fall-off occurs for the large systems or small
temperature. It is worth while to mention that an above
choice of parameters a suppress the sign problem for
local DMFT-like action with diagonal in orbital indices
bath Green function.

Now we discuss how to organize a random walk
in practice. We need to perform a random walk in
the space of k;ri,7y,...,75,. Two kinds of trial steps
are necessary: one should try either to increase or to
decrease k by 1, and, respectively, to add or to re-
move the four corresponding operators. A proposition
for rog41, rng, Tok+2, r’2k+2 should be generated for the
”incremental” step. The normalized modulus

llw|| fwratiraeta ], (5)

\lw|| = [ [ [ [ |wrE |drdRdr'dR!,

can be used as a probability density for this proposition.
Then the standard Metropolis acceptance criterion can
be constructed using the ratio

T1...T2R42
||w|| 1 Theg2 6
k+ 1 ) D’I‘l...’l’zh ( )
T Thh

The ”decremental” step can be organized in a same way.

The most time consuming operation of the algorithm
is a calculation of the ratio of determinants, defined by
the Eq. (4). Fast update trick can be used, resulting in
o k2 operations [1, 4]. Here we estimate k. An aver-
age value of (6) determines an acceptance rate for QMC
sampling. It is reasonable to expect that by the order
of magnitude this rate is not much less then unity. The
ratio of determinants times ||w|| can be interpreted as
an expectation value for |W|. Therefore

E~|W|. (7

For the Hubbard lattice of N atoms with an interac-
tion constant U, for instance, |W| o« B|U|N. In prin-
ciple, one can manipulate with a to minimize W
These manipulations should however preserve the aver-
age sign as large as possible. We apply the proposed
continuous time QMC for the important problem of
super-symmetric two band impurity model at half-filling
[20, 21]. To our knowledge, this is the first successful
Mucema B MIAT® Tom 80
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attempt to take the off-diagonal exchange terms of this
model into account. These terms are important for the
realistic study of multi-band Kondo problem, because
they are responsible for the local moment formation [20].
The interaction in this model has the following form

Y (¥ () -2)(¥(r) - 2)-L(S8(r) - S(r) + L(r) - L(r)),

2 2
(8)

where N is the operator of total number, S and L are to-
tal spin and orbital-momentum operators, respectively.
The interaction is spin- and orbital-rotationally invari-
ant. The Gaussian part of the action represents the diag-
onal semicircular density of states [7] with unitary half-
band width: ¢(w) = 2/(w, + /w2 — 1), where w,, are
Matsubara frequencies related to imaginary time vari-
able. We used parameters U = 4,J = 1 at 8 = 4.
A modification of this model was also studied, where
spin-flip operators were replaced with the fully non-local
in time terms. For example, operator cf., c®7c}  c!17

was replaced with 81 [dr'cl, el e, Figures

present the result for the local Green function G¢ and
the four-point correlator (7 —7') = (c(‘;TTc"“cI ¢T,clTT').
The later quantity characterizes the spin-spin correla-
tions and would vanish if the exchange is absent.
Figure 1 shows the Green function at Matsubara fre-
quencies. The typical number of QMC trials was 2-107.

Results for the local and non-local in time spin-flip are
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Fig.1. Local Green function of the two-band rotationally
invariant model at the Matsubara frequencies. Filled and
open circles correspond to the static and to the nonlocal in
time spin-flip, respectively. High-frequency asymptotics is
drawn with line. Inset shows the distribution function for
the perturbation order &

shown with filled and open circles, respectively. The dis-
tribution function for the perturbation order k is drawn
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in the inset. For the system studied it appears to be a
Gaussian-like peak located at k& ~ 75, with an acordance
to Eq. (7). The estimated error bar in G(w,) is about
3-1072 for the lowest frequency and becomes smaller as
the frequency increases. The high-frequency tail obeys
an asymptotic behavior —Im(iw + €)~! with € ~ 2.9.
Green function in the time domain was obtained by
a numerical Fourier-transform from the data for G(wy,).
For high harmonics the above-mentioned asymptotic was
used. Results are presented in the upper panel of Fig.2.
The lower panel presents the result for x(7). Thess data

0.5
G L
0.4 02

0.3

0.2 0

0.1

0.15

0.10 |-

0.05 -

Fig.2. Imaginary-time Green Function (upper panel) and
the four-point correlator x (lower panel) for two band
model. Upper inset shows DOS computed from the Green
function. Solid and dot lines correspond to the static and
to the nonlocal in time spin-flip, respectively. Lower inset
shows DOS for 5 band model with the same value of U and
J=10.2

are obtained similarly, the difference is that x(w) is de-
fined at Bose Matsubara frequencies and obeys a 1/w?
decay. It is interesting to note that Green function is
almost insensitive to the details of spin-flip retardation.
Both Green functions are very similar and correspond
to qualitatively the same density of states (DOS). The
maximum-entropy guess for DOS is presented in the in-
set to Fig.2. On the other hand, switch to the non-local
in time exchange modifies x(7) dramatically. The lo-
cal in time exchange results in a pronounces peak of
x(7) at 7 = 0, whereas the non-local spin-flip results in

almost time-independent spin-spin correlations. For re-
alistic description of Kondo impurities like cobalt atom
on metallic surface it is of crucial importance to use
the spin and orbital rotationally invariant Coulomb ver-
tex in the non-perturbative investigation of electronic
structure. The proposed continuous time QMC scheme
is easily generalized for a general multiband case. As
example we shows the DOS for five d-orbital model at
half-filling for the same value of U and J = 0.2 in the
lower insert of Fig.2.

For a final discussion it is suitable to analyze a con-
vergence of the series (2). Fermi statistics and a finite
size of the system insure us that the configurational space
of the problem is of a finite order. Because the perturba-
tion operator W has a finite norm, its powers W* there-
fore grow slower than k! Consequently, from the math-
ematical point of view there is no doubt that the series
(2) always converges. Physically it is important to note
that this convergence is related both with a choice of
the type of serial expansion and with the peculiarities of
the system under study. First of all, series (2) contains
all diagrams, including non-bounded. In the analytical
diagram-series expansion non-bounded diagrams drop
out from the calculation [22], and the convergence ra-
dius for the diagram-series expansion differs from that
of (2). Further, Fermi statistics is indeed important. An
analog of (2) for Bose field can diverge even for a single-
atom problem [22], because in this case one deals with
an infinite-order Gilbert space. It is important to keep
this in mind for possible extensions of the algorithm to
the electron-phonon systems and to the field models, as
these systems are also characterized by an infinite-order
phase space. A general time-dependent form of the ac-
tion (Eq. (1)) allowed us to use renormalization theory
for the Hubbard-like model: in this case local DMFT
would be a starting point for lattice calculations in or-
der to reduce the effective interaction and minimize the
sign problem.

In conclusion, we have developed a fermionic contin-
uous time quantum Monte Carlo method for general non-
local in space and time interactions. We demonstrated
that for a Hubbard-type models the computational time
for a single trial step scales similarly to that for the
schemes based on a Stratonovich transformation. An
important difference occurs however for the non-local
interactions. Consider, for example, a system with a
large Hubbard U and much smaller but still important
Coulomb interatomic interaction. One needs to intro-
duce N? auxiliary fields per time slice instead of N to
take the long-range forces into account. On the other
hand, the complexity of the present algorithm should
remain almost the same as for the local interactions, be-
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cause [W| does not change much. This should be useful
for the realistic cluster DMFT calculations and for the
applications to quantum chemistry [5]. It is also possible
to study the interactions retarded in time, particularly
the super-exchange and the effects related to dissipation.
This was demonstrated for an important case of the fully
rotationally invariant two band model and its extension
with non-local in time spin-flip terms.
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