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Topological noise scalings in superfluid and classical turbulence
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We calculate the topological noise characterizing the direction of line vortices in superfluid and classical
turbulence by finding the intersection of line vortices with square surfaces of edge length I, positioned normal
to three orthogonal axes. In the case of homogeneous superfluid turbulence in thermal counterflow, we find
that the noise scales like [, along the two directions normal to the counterflow and like 132 along the direc-
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tion parallel to it. In homogeneous isotropic superfluid turbulence at T — 0 K, the noise scales like /,'". In
homogeneous isotropic classical turbulence the scaling is 12. We offer possible interpretations of the computed

scalings, as well as, justification for their differences.

PACS: 47.27.Gs, 47.32.Cc, 67.40.Vs

Turbulence in thermally excited superfluids involves
the interaction of topological defects (line vortices) of
collective superfluid motion with thermal excitations of
the superfluid ground state (normal fluid) via mutual
friction forces. In the related field of classical turbu-
lence, a quantized model of Navier—Stokes turbulence
was developed in which all flow vorticity is in the form of
classical vortex filaments (schoinoidal turbulence). The
model was found to reproduce central aspects of classi-
cal turbulence phenomenology like Kolmogorov scalings
for the second and third order structure functions [1],
Navier—Stokes turbulence kinematics [2] and geometrical
aspects of turbulent vorticity [3]. Definitely, in all cases
the geometry of the vortices is of paramount importance.
However, much less detailed information might be of im-
portance in cases where gross properties of the system
are of interest [4—6]. For example, the (topological)
noise characterizing the direction of vortices intersect-
ing a particular surface dividing in two the fluid vol-
ume, provides information about the net vorticity flux
through the surface. Moreover, noise scalings are impor-
tant in the context of quantum field theory (condensed
matter and high energy physics), where changes in as-
ymptotic scaling behavior mark phase transitions [7]. In
this Letter, we investigate whether topological noise scal-
ings exist in the context of flow turbulence and how they
might be affected by the equations of motion. We study
three different flow situations: (a) homogeneous super-
fluid turbulence in thermal counterflow [8, 9], (b) homo-
geneous isotropic superfluid turbulence at T — 0K [10]
and (c¢) homogeneous isotropic classical turbulence.

(a) The mathematical system describing thermal
counterflow concerns exclusively the quantized vortex
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dynamics. This is because the counterflow velocity
V., — V, itself (with V,, the normal fluid velocity and
'V, the irrotational part of superfluid velocity) is kine-
matically imposed. Therefore, although the counterflow
affects the line vortex motion, it is unaffected by the lat-
ter. If S(,t) is the three dimensional representation of
the vortex tangle (where £ is the arclength parametriza-
tion along the loops and ¢ is time), then its motion obeys
the equation [11]:

§:V1:V3+Vbs+azs’x(Vn—Vs—Vbs)—

dt
— 028 X [S' X (V5 = V3 — V)] (1)

where the rotational part of superfluid velocity Vy, is
given by the Biot-Savart integral:

Vi) =1 [ dﬁW' @)

There x is the space coordinate,  is the quantum of cir-
culation, S’ = dS/d¢ is the unit tangent vector and a,,
ag, are the mutual friction coefficients.

The working fluid is “He and the temperature T =
= 1.3K. Under these conditions k = 9.97 - 10~* cm?/s,
the density of the normal fluid is p, = 6.5-10 3 g/cm 3,
the density of the superfluid is p; = 138.6-10~3g/cm~3,
the normal fluid viscosity is ¥ = 23.30 - 10~4cm?/s,
oy = 3.4145-1072 and o, = 1.3703-10~2. The compu-
tation is done in a box of size I, = 0.1 cm with periodic
boundary conditions to enforce homogeneity. The ve-
locities V,, and V are prescribed to be parallel to the
y axis. We prescribe the Reynolds number of the nor-
mal fluid Re = |V,|lp/v at t = 0 to be Re = 50. This
specifies |V,| = 0.6408 cm/s and using the continuity
equation ps; Vs + p, V,, = 0 we find V, = —(pn/ps)Van
with |V4| = 0.030146 cm/s. Then by specifying the ini-
tial geometry of the tangle (which at ¢ = 0 consists of
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10 randomly positioned rings of length Ly = 2.1608 cm),
one can calculate the evolution of the tangle using nu-
merical methods. We choose the discretization length
A¢ along the line vortices to be A¢ = 2.0833 - 102 cm
and the numerical time step At to be small enough so
that no possible (resolved by A¢&) Kelvin wave in the
system propagates more than A¢ during A¢. This re-
quirement leads to typical time steps At =~ 0.001s. Fi-
nally, when two vortices approach closer than A¢ they
reconnect. This methodology is supported by the results
of [12, 13].

Knowledge at each time step of the tangle’s configu-
ration allows the calculation of topological number noise.
The following algorithm was developed for this purpose.
First, the average intervortex distance I, = (L/ 12)71/ %is
defined. Subsequently (for sufficiently dense tangles), a
range of length sizes is specified [ml¢, l;] with m being a
small natural number (m = 4 in the present calculation).
A sequence of lengths I; (ml¢ < s < Ip) is generated by
dividing [ml¢,ls] into n subintervals (n = 100 in this
computation). Each of the lengths I, in this sequence
is taken to be the edge of a square surface positioned
normal to each axis in due order of succession. For each
choice of edge length and axis, we consider k surfaces
(k = 1000 in this calculation). The position of each
square surface center is defined using random numbers
for the coordinates. For every surface, we determine
the intersection points with the vortex tangle. In doing
this, we attribute to every intersection point a topologi-
cal number +1 or —1 depending on whether the vorticity
vector is pointing towards one or the other of the two
halfs of the fluid volume that the surface delimits. In
this work, the number +1 is used when vorticity points
towards the positive part of an axis. We call these num-
bers topological because they characterize the direction
of vorticity vector along the line vortex and this direc-
tion, as well as, the vortex itself persist in time due to
the topological nature of the defects. We define NT to
be the sum of points associated with topological number
+1 and in a similar way we define N—. In the end, the
above mentioned exercise attributes to each surface the
quantity Nt — N~ which represents the net number of
vorticity vectors that thread the surface possesing one of
the two possible orientations. By squaring this quantity
and averaging over the number k of surfaces of edge I,
normal to the particular axis, we obtain the topologi-
cal (number) noise ;(l,) = (N+ — N~)?) with i = 1,3
representing the three directions.

In accordance with the calculations of [14] the coun-
terflow causes a rapid increase in the tangle length L.
At t = 9.7s, L = 182.9cm and due to the dramatic
increase in the number of vortex particles required by

IIucema B MITP® Tom 80 BEIM.3-4 2004

the numerics, the calculation becomes very complex. In
response to this, we regulate the magnitude of the coun-
terflow in order to achieve a steady state for L. We
find (Fig.1, top) that when the Reynolds number is close
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Fig.1. Results for counterflow turbulence: Time evolution
of tangle length L (top) and topological noises 6; as func-
tions of the surface edge length I, at stoppage time (bot-
tom). Time ¢ is measured in s and L, [, in cm

to Re= 27.5 the tangle length becomes to a very good
approximation stationary. Definitely, one would like to
continue the calculation for longer times while keeping
the vortex length approximately constant. However, for
the number of particles in the present calculation (typi-
cally close to 80-10%), the Biot-Savart many body prob-
lem is computationally too complex for that. This sit-
uation might change in the future with the combina-
tion of powerful numerical (tree algorithms) and com-
putational (parallel algorithms) methodologies. It is ob-
served (Fig.1, bottom) that over a decade of I, 6; and
0> display the scaling behaviour I, and lf/ 2 respectively.
We note that 65 refers to surfaces normal to the coun-
terflow and that the §; and 63 scaling behaviours were
identical. The scalings remained unaltered throughout
the time interval of approximately constant L. The noise
in the counterflow direction seems to be proportional to
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the measure of a fractal object thicker than a line but
still not as extented as a surface.

One can say that the counterflow introduces an
anisotropy in the equations of motion. Indeed, in con-
trast to vortices along the z and z directions, those
parallel to V,, — V, do not interact with the counter-
flow. Therefore, as far as, the tangle configuration is
concerned, a kind of order is introduced along the nor-
mal to the counterflow axes due to the S’ x (V,, — V)
terms in the equations of motion. As a result, differ-
ent scalings are observed in different directions although
the particular values of the observed scalings are not a
priori anticipated. Certainly since V,, — V drives the
turbulence in the system, one should not exclude the
possibility that the calculated exponents depend on the
counterflow velocity magnitude. How should one inter-
pret the 12’/ 2 scaling? It is possible that since the coun-
terflow velocity does not interact with vortices parallel
to V, — V, this scaling is indicative of the situation
where V,, — V, = 0 but there is still mutual friction.
In this case, the only relevant velocity for the determi-
nation of the speed of the line vortex is the Biot-Savart
one. However, one can object arguing that the lg/ ? scal-
ing incorporates indirectly the effect of the counterflow
due to the interdependence of the vortex dynamics along
the three dimensions which leads to influence from the
more orderly vortex states along the other two direc-
tions. Certainly, future computations could clarify these
important issues.

(b) The mathematical system that describes super-
fluid turbulence for T' — 0 in the absence of any irrota-
tional flow component is a subset of equation (1):

P =, @
with Vy, defined as in equation (2). The size of the box
is the same as before I, = 0.1cm. The discretization
length A¢ along the line vortices is A¢ = 1.1904-1073 cm
and the numerical time step At is At = 0.001s. There
are initially 700 randomly positioned vortex rings of to-
tal length L = 86.39cm. The temporal evolution of L
is seen in Fig.2 (top), indicating a steady state. The
latter is not surprising since the superfluid vortex sys-
tem is conservative and its energy is constant in time
hinting at small variations of the tangle length. Until
stoppage time, around 500 reconnections have occured
in the system and 50 time steps were taken. Since (by
construction) the flow is homogeneous and isotropic, the
topological noises #; i = 1,3 were found to be similar in
all directions. Therefore in Fig.2 (bottom), we plot the
arithmetic mean 6, of the noises §;. It is evident that
8, scales like l:/ * We have checked that during the last
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Fig.2. Results for homogeneous isotropic superfluid turbu-
lence at T — 0: Time evolution of tangle length L (top)
and average of topological noises 6, as function of the sur-
face edge length I, at stoppage time (bottom). Time ¢ is
measured in s and L, [; in cm

ten time steps of the computation the scaling remained
invariant. The contrast with the exponents calculated
for counterflow turbulence is indicative of the different
physics characterizing the two situations.

(c) Finally, the mathematical system that describes
(the quantized model) of classical turbulence is also
based on the Biot-Savart equation: If r; is the three
dimensional representation of the centre-line curve of fil-
ament 7 then the vortex motion is described by:

dl‘i
o= V.0, @)

where V(r;(t),t) is the Biot-Savart velocity:

1 [ (x—X) xw(x')dx'
=/ R (5)

V(x,t) =

with w(x') being the vorticity vector and x' denoting
points along the core centerlines. In case of superfluid
topological defects, w(x') is a delta-function along the
curve of the vortex C; since the superfluid vortices have
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(at hydrodynamic scales) infinitesimal core sizes. How-
ever, in the classical Navier—Stokes case the vortices
have dynamic, finite cores and the vorticity is distrib-
uted. Because of this we employ a more complex vortic-
ity representation [16]:

w(x', ) :;F/C,- ai(g,t)3C(|x';i(l'§i,(g,t)|) X

or;  x' —ri(,t) 0oy
x (a_s+ 76 1) 65)‘15’

where 0;(§) is the local core radius of filament ¢ and the
smoothing kernel { describes the way vorticity spreads
around the core centerline. There is a variety of smooth-
ing kernels suitable for the computation. The high order
algebraic kernel of [17] is the one used here. A detailed
discussion of the numerical analysis and the formulas
used can be found in [18]. T is the circulation strength
attributed to all filaments and is the model’s analog of
the quantum of circulation. The formula shows that the
vorticity field has two constituents. The first term of the
sum inside the integral sign models the vorticity compo-
nent along the direction of the filament tangent Or;/0¢.
This is the only component present in quantum vor-
tices (without the smoothing effect of {). The second
term models the vorticity component along the direc-
tion x — r;(§) and is induced by the change of o;(&)
along the filaments. The filament cores tend to grow
due to diffusive effects. This phenomenon is calculated
using the core-spreading method [19]. When two fil-
aments approach within a certain distance from each
other they reconnect. Detailed description of the recon-
nection methodology can be found in [20].

In order to calculate the topological noises we use the
stoppage time tangle configuration of [3]. In this earlier
calculation, the initial conditions consist of 192 rings in
a periodic box. The Reynolds number has the value
Re = % = 5-10%. The results are made dimensionless

(6)

in the following manner: ¢ = FR—';’, X = %, w = #
where t', x', w' are dimensional and R is a reference
initial vortex-ring radius. We have chosen I' = 1 and
R = 1; the box size is [ = 2.041. The discretization
length A¢ along the line vortices is A{ = 41072 and
the numerical time step At is At ~ 0.0024. In order
to have a stable calculation, the latter is chosen to be
the inverse of the maximum average vorticity over the
vortex cores. The total evolution time is comparable to
the life time of the large eddies. The temporal evolution
of tangle length L after the artificial initial transient is
shown in Fig.3 (top). As demonstrated in [1] this flow
exhibits a Kolmogorov scaling exponent for the energy
spectrum. Since the flow is isotropic, we have verified
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Fig.3. Results for homogeneous isotropic classical turbu-
lence: Time evolution of tangle length L as calculated in
[3] (top) and average of topological noises 8, as function
of the surface edge length I, at stoppage time (bottom).
All quantities are nondimensional

that all three dimensions give identical scalings. In Fig.3
(bottom) we plot the arithmetic mean 6, of the noises
6;. It is evident that 6, scales like I2. Why the differ-
ence in scaling exponents between classical and quan-
tum case? After all is it not the case that both are
described by the Biot-Savart integral? The answer to
these questions could be found in [3, 15]. In these pa-
pers, the curvature spectra for superfluid and classical
vortices were reported. In the former case it was found
that the spectra were flat (white noise like). However,
in the latter case a non-trivial scaling was discovered
exactly in the wavenumber regime corresponding to the
inertial range of turbulence with Kolmogorov scaling.
The authors of [3] attributed this difference to the abil-
ity of classical vortices (in opposition to superfluid line
vortices) to stretch. Therefore, since the geometries in
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these two cases are different, there is no reason to expect
the topological noise scalings (which are determined by
the geometry) to be identical.

The scalings revealed in the present work are char-
acterized by the simplicity of the computed quantities.
It is desirable that a deeper (and more technical) study
of possible connections between the physics of vortex
systems and the topology/geometry of their configura-
tions is pursued in the future (e.g. [21, 22]). Such stud-
ies would illuminate the mechanisms underlying the ap-
pearence of the observed scalings. Finally, one notes
that due to computational complexity it is difficult to
make the same calculation with a wide range of counter-
flow velocity magnitudes. Therefore, it is not possible
at present to be assertive about the universality of the
reported (counterflow) scaling exponents.
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