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The phase diagram of weakly coupled XX Z chains in a transverse magnetic field is studied using the
mean-field approximation for the interchain coupling and known exact results for an effective one-dimensional
model. Results are applied to the quasi-one-dimensional antiferromagnet Cs2CoCls and the value of interchain

interaction in this compound is estimated.

PACS: 75.10.Jm

The effects induced by magnetic fields in low-
dimensional magnets are subjects of intensive theoretical
and experimental research [1]. One of the striking effects
is the dependence of magnetic properties of quasi-one-
dimensional (Q1D) antiferromagnets with anisotropic
interactions on the direction of the applied magnetic
field. For example, the behavior of these systems in a
transverse magnetic field is drastically different in com-
parison with the case of the longitudinal field applied
along the anisotropy axis. In particular, the transverse
field induces a gap in the spectrum and the antiferromag-
netic long range order (AF LRO) in the perpendicular
direction. A quantum phase transition takes place at
some critical field, where the LRO and the gap vanish.
The phase transition of this type has been observed in
the Q1D antiferromagnet Cs2CoCly [2]. The simplest
model of the one-dimensional anisotropic antiferromag-
net in the transverse field is the spin-; X X Z chain de-
scribed by the Hamiltonian

Hip=J ) (S2S%,, +SUSY,, +ASESE,,) —
—-H) 8, (1)

where A is an anisotropy parameter which assumed to
be 0 < A< 1.

It was proposed [2] that low-energy properties of
Cs2CoCly is described by (1) with J = 0.23meV and
A = 0.25. In contrast to the case of the longitudi-
nal field the symmetry-breaking transverse field does
not commute with the X X 7 Hamiltonian and the ex-
act integrability of (1) is destroyed. The model (1)
has been investigated using different approximate ap-
proaches [3—6]. The scaling estimates at small field [7]
show that the transverse field generates the staggered
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magnetization My, = ((—1)"S¥) (AF LRO in the Y di-

rection) and the gap in the spectrum m (at H = 0 the
spectrum is gapless)
1 n 1

~ H 2—d d = — —

m ~ (H/J)2s, 14 o

MstN(H/J)%, nzl—%arccosA. (2)

To study the model (1), when the field H is not small,
the mean-field approximation (MFA) has been proposed
in [7] and elaborated in [8]. The MFA is based on the
Jordan-Wigner transformation of spin—% operators to the
Fermi ones with the subsequent mean-field treatment of
the four-fermion interaction term. As a result the aris-
ing Hamiltonian is quadratic in Fermi-operators and it
is solved exactly. Transforming this MFA Hamiltonian
back to spin variables we obtain a spin—% XY model in
the longitudinal field

Hxy=J"Y [(1—7)SZS%,, + (1+7)SLSY,, — hSZ],
3)

where parameters J', v and h are determined by the
MFA self-consistent conditions [7, 8].

The model (3) is exactly solvable and its properties
are well studied [9]. This model undergoes the T' = 0
phase transition of the 2D Ising universality class at
h = 1 corresponding to the MFA value of the critical
field H!P(A). In particular, in the vicinity of the criti-
cal field My ~ |HCID (A) - H|1/8. A comparison of the
MFA results with those obtained in precise numerical
DMRG calculations shows high accuracy of the MFA
at H > J [8]. The dependence My (H) for A = 0.25
obtained with use of the MFA and scaling estimate (2)
is shown on Fig.1 by dashed line. This magnetization
curve is qualitative similar to that observed in neutron-
scattering experiments on CssCoCly. At the same time,
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Fig.1. The dependence of T' = 0 LRO parameter on mag-
netic field for 1D chain (dashed line) and Q1D system
(solid line) for A = 0.25

there is essential difference in the low-field behavior of
M. The experimental AF ordered moment is finite at
H = 0 while My — 0 according to (2). This difference
is due to weak interchain couplings in real systems and
these couplings form a 3D magnetically ordered moment
below a Neel temperature Tv. Besides, interchain cou-
plings extend the 1D ordered phase with My # 0 to
finite temperatures. Therefore, to describe low temper-
ature properties of real Q1D compounds it is necessary
to take into account interchain interactions.

In this latter we will consider the system of coupled
parallel XX Z chains in the transverse field described
by the Hamiltonian

H= JZ(S;: fL+1,r+Sz,rsg+l,r+ASz,rS;+l,r) +
+ JJ_ Z(Sz,rsﬁ,r—}—& + Sg,rsfry;,r-y& + A‘S’fz,rsﬁ,,rﬁs) -
—-H Z Sz,r (4)

where n and r label lattice sites along the chain and in
perpendicular directions,  is summed over two nearest
neighbor vectors in the transverse directions, J, is a
weak coupling between neighboring chains.

A standard method for treating the model (4) is to
use the mean-field approximation for interchain coupling
and to treat the resulting effective 1D problem as ex-
actly as possible [10, 11] (we call this approach as chain
mean-field theory (CMFT) to distinguish it from the
MFA for the 1D model (1)). We assume that AF or-
der in each chain to be oriented along the Y direction
and the uniform magnetization along the X axis as it
occurs in the pure 1D model (1). The quasi-1D model
contains another mechanism to generate the LRO. If one
of the chains is AF ordered, the interchain couplings in-

duce an effective staggered field on the nearest chains.
In the CMFT interchain coupling is replaced by effective
fields and the Hamiltonian (4) reduces to an effective 1D
Hamiltonian having the form

Hor = J ) (SaSmyr + SyShis +AS;S; 1) —
—(H—H,)) Si—H,>» (-1)"S¥ (5)

where fields H, and H, are determined by self-
consistency relations

Hz =ZJL (Sz),

z is the transverse coordination number.

At first, we consider the model (5) at H = 0 and
T = 0. It can be easily shown that the self-consistency
relation gives (SZ) = 0 and the model (5) reduces to
the X X Z chain in the staggered field. The low-energy
properties of this model are described by a quantum
sine-Gordon model [12]

H=Ho+YV,

Hy = zJJ_M&t, (6)

Ho = @ /d:c{(az@)2 +(8:9)}, (M

V= —Hy\/ZA(n)/dm sin(4/27mn0),

where ®(z) and ©(z) are boson and dual fields respec-
tively, v(n) = Jsin(nn)/(2 — 2n) is the sound velocity
and the coefficient A(n) was found in [13].

The spectrum of H is gapless. The perturbation V'
has scaling dimension 7/2 and generates the mass gap

mzv(CHy) , ®)

v

where constant C' is [14]

2—-n/2
L=y ()

n N 2
2T (- T
W ()
The staggered magnetization My, is related to a mass
gap m as [13]

My, = \/ﬂ<exp (i\/ﬁe» =D (%)"/2, (10)

where

1
Vi (1-3)
(16 — 4n) sin (%) r (g)

e,

D =

X
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From the equations (8) and (10) we get

n/2

My =D <CD%> o, (12)
m=v (C’D%) o (13)

The AF LRO My, survives at T < T. The Neel
temperature T can be found using the random phase
approximation (RPA). The RPA dynamical susceptibil-
ity of coupled chains in disordered phase (T > Tk) is

Xib (@, k)

YW(w,k, k1) = . 14
Hokk) == aomen W

The condition determined T is
2J 1 x¥%(0,7) = 1. (15)

The dynamical susceptibility of the 1D XX Z model at
T < J is known [15]

v

B 2—n
vy _
Xip (0:) v (27rT) ’ (16)

where
I?(1-n/2)T%(n/4)
r2(1-n/4)

Using the condition (15) we extract the Neel temper-
ature at H =0

B = Asin (wn/2) (17)

Tn(H =0) = — (

:27r

BZJJ_)Zi"

Y (18)

We note that the ratio Ty /m does not depend on J |
and is determined by 1D parameter 7 only.

An analysis of experimental data carried out
in Ref.[2] has shown that the Q1D antiferromagnet
Cs2CoCly consists of two interpenetrating sublattices
with identical intrasublattice interactions. These sub-
lattices are non-interacting on the CMFT level. Each
sublattice has tetragonal symmetry and described by the
model (4) with z = 4. However, no direct experimental
data on the value of the interchain interaction J, is
available. The Neel temperature in CssCoCly at H =0
is Ty = 0.0813J = 0.217 K [2]. Using these data
we can estimate unknown value of J, in CsyCoCly.
Substituting A = 0.25 (A = 0.1405) in (18) we find

IL _ 0.0147. (19)
J

This value is really small, so that our assumption
about Q1D behavior of the system is justified.
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Further, using the found value of J, we can find the
staggered magnetization My at T = 0. According to
Eq.(12) M, = 0.348. The experimental value of the AF
ordered moment at T <« Tn is My ~ 0.342 [2]. Such
a perfect coincidence confirms our estimate (19). Be-
sides, the found value of J, gives us also the gap (13)
m = 0.78 K. It is remarkable that even so small inter-
chain coupling as in Eq.(19) causes so large value of
LRO and the gap.

At H = 0 and T = 0 the AF LRO is generated by the
interchain couplings. At H > 0 the ’one-dimensional’
mechanism is switched. The crude estimation of the
value H*, at which this mechanism becomes predom-
inant, can be obtained by a comparison of (2) with (13)

H* ~ J(2J0)J)50 . (20)

At H > H* in the Hamiltonian (5) the mean field H,
can be neglected in comparison with H and at T' = 0 the
main effect of Hy consists in a small shift of the critical
field HIP (see below).

At H = H!P and H, = 0 the spectrum of the
model (5) is gapless. The perturbation H, ) (—1)"S¥
has scaling dimension 1/8 and generates the mass gap
m ~ (H,/J)®'® and AF LRO M,; ~ (H,/J)*/*5 in the
model (5). The self-consistency relations (6) therefore
give

My (HIP) ~ (2J./T)™,
m(HP) ~ (2. /). (21)

To estimate the Neel temperature Ty (H) in the RPA
it is necessary to know the finite temperature staggered
susceptibility x¥¥ (0, 7) for the model (1) at H > 0. Un-
fortunately, it is unknown. Instead, we consider the
MFA model (3), for which the susceptibility can be
found. As it was noted above the MFA describes cor-
rectly the ground state properties of the model (1) at
H > J. We expect that the MFA gives a satisfactory
description of (1) at low temperature (T < J) as well.
The problem of finding T (H) can be solved in the same
manner as it was done by Carr and Tsvelik in [16] for
Q1D quantum Ising model, which on the CMFT level
reduces to (3) with y = 1.

We are mainly interested in the region of the fields
near the critical field H1P(A) or at h ~ 1 in terms of
the MFA Hamiltonian (3). Exactly at A = 1, where
the model (3) is critical, the staggered susceptibility at
T <« J according to [15] is

T ( Ve )7/4 T (7/8)T?(1/16)

27T/ T (1/8)T2(15/16)’
(22)

x1p(0,m) = R(7)

Ve
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where sound velocity at the critical field v, = «J' is
determined from the MFA self-consistent equations [7]
and

61/421/12A73 2,\/3/4

RO = (23)

with Glaisher constant A ~ 1.282.
The Neel temperature in the RPA is
ve [z R(Y)T (7/8)T2(1/16)1*"

In(H) = 3 | = T (1/8)T2(15/16)

(24)

For A = 0.25 the critical field in the MFA is H!P ~
~ 1.6 J and v. ~ 0.185J. Therefore, the estimated Neel
temperature for Cs2CoCly is Tn (HP) = 0.145K.

Near the critical field at H > H!P (disorder region
in the 1D model) the low-temperature staggered suscep-
tibility is well approximated by the formula [1]

3/4 2 1/4
b~ v(2m/v)

~ 25
L+y02k2 +m2 — (w +i/7)° 2%)

le]:l:l)(wa”r -

where the gap m = |H - H CID| and the phase relaxation
time 7, = (7/2T)e™/7. In this case the RPA condition
of the phase transition (15) reads

m24+772= 7(71}6)3/4 (2m)1/4 zJ.. (26)
[+ 1 _}_,‘/

At first we estimate the shift of the critical field
0H. = H?P — HIP caused by interchain couplings. This
shift is determined by the condition 7' — 0 in Eq.(26)

3/7

SH. — 21/7 (vve) /
.= A ALV
(1 +7)*7

For A = 0.25 and found value of J, (19) the shift of
the critical field is about 3%. We note that in the vicin-
ity of the critical point H3P the low-energy properties
of Q1D model (4) belong to the universality class of the
(3+1)-dimensional classical Ising model.

Eq.(26) gives also the behavior of Neel temperature
near the 3D critical point H3P — H < §H,

(zJ )7 (27)

_ 0H
Tn(H) ~ 2(6H,)In! <m> (28)
At intermediate fields H* < H < H!P (the 1D or-
dered region) the low temperature T < m staggered
susceptibility has an exponential form [1]

v3/4
xip(0,7) ~ (m/v)1/4§c7c ~ W€2m/T (29)

with correlation length €. = vy/7/2mTe™/T [1]. Thus,
for zJ, < m(m/v)%/* the RPA criteria (15) yields

Tn(H) ~ 2m(H)In* (m(H )) . (30)
ZJJ_

Combining the found expressions for Neel tempera-
ture in different regions (18), (24), (28), (30) we arrive at
the phase diagram schematically shown on Fig.2. Since
the gap m(H) in the AF ordered region has a maximum

2m
In(m/J l)
PM
12— h)
~(J, M)
EE 4/7
&2 ~(J 1 )
AF
H, HSD

Fig.2. Schematic phase diagram of the model (4). The
phase boundary separates the antiferromagnetic phase
with M,: # 0 from the paramagnetic phase without AF
LRO

at some intermediate value of field [7, 8], then according
to Eq.(30) the function Tv(H) also has a maximum as
shown on Fig.2. This fact was experimentally observed
in CSQCOCLl [2]
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