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An interplay of the Kondo scattering and exciton effects (d — f Coulomb interaction) in the intermediate
valence systems and Kondo lattices is demonstrated to lead to an essential change of the scaling behavior in
comparison with the standard Anderson model. In particular, a marginal regime can occur where characteris-
tic fluctuation rate is proportional to flow cutoff parameter. In this regime the “Kondo temperature” itself is
strongly temperature dependent which may give a key to the interpretation of controversial experimental data

for heavy fermions and related systems.

PACS: 71.27.+a, 71.28.+d, 75.30.Mb

There is an interesting class of rare-earth compounds
such as Ce4BizPt;, SmBg, SmS under pressure (the
“golden” phase), TmSe, YbB1, which were called ear-
lier intermediate valence (IV) compounds and now are
treated as “heavy-fermion (HF) semiconductors”, or
“Kondo insulators” (for a review, see Refs.[1, 2]). Var-
ious names emphasize different peculiarities of these
compounds. As for electron energy spectrum, most
of them are narrow gap semiconductors with an anom-
alously small energy scale (the gap width), of the order
of tens or hundreds of Kelvins (see Ref. [2] and a review
of earlier experiments in Ref. [3]). At the same time,
they do demonstrate intermediate valence of rare earth
ions (usually between 2+ and 3+) in a number of proper-
ties, e.g., in the lattice constants (which are intermediate
between those for isostructural compounds with di- and
trivalent ions), core level spectra (which are a mixture
of the spectra of di- and trivalent ions with comparable
weights), and many others [1, 4, 5].

As well as for the HF metals, the origin of this small
energy scale is a key point to understand anomalous
properties of the IV compounds. For the HF metals
it is commonly accepted now that they are the Kondo
lattices, which means that this energy scale (the Kondo
temperature Tx) is a width of the Kondo resonance ow-
ing to spin-dependent scattering of conduction electrons
by f-electron centers [6]. As a result of an interplay
of the Kondo effect and interatomic magnetic interac-
tions, the Tk value for a lattice can strongly differ from
that for an isolated impurity [7], spin fluctuations being
of crucial importance for the HF behavior. It is very
natural to expect that these effects are important also
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for the IV compounds. At the same time, valence or
charge fluctuations should be also considered. They are
determined in part by the Coulomb (“Falicov-Kimball”)
interaction between conduction and localized electrons
[8]. Taking into account these interactions together with
the hybridization processes it is possible to describe the
IV state as a kind of exciton condensation [3, 9]. Note
that in the IV regime the one-center spinless Falicov-
Kimball model with hybridization is formally equivalent
to the anisotropic Kondo problem, different valent states
playing the role of pseudospin “up” and “down” states
[10]. It is the degeneracy of quantum states for a scat-
tering center which is important for the formation of
the Kondo resonance [11]. In the IV case the divalent
and trivalent states are degenerate by definition, so that
this analogy is not surprising. Therefore it is natural to
consider the formation of the Kondo resonance for the
IV compounds taking into account both spin and charge
fluctuations, or, equivalently, both the “Kondo” and ex-
citon (“Falicov-Kimball”) effects. This is the aim of the
present work. Since there is no clear demarcation be-
tween the IV and Kondo systems, it will be shown that
the excitonic effects may be relevant also for the latter
case.

To investigate effects of interaction of current carri-
ers with local moments we use the Hamiltonian of the
asymmetric infinite-U SU(N) Anderson model with in-
clusion of the Falicov-Kimball interaction (on-site d — f
Coulomb repulsion G),

H= Z[tkchCkm +V (Cmekm + f]tmckm) +
km

+ Ef fl o fem) + G Y fh fimel i cime (1)
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where the on-site f — f Coulomb interaction is put to
infinity, so that doubly occupied states are suppressed,
f;'m = |im)(:0| are the Hubbard operator (|im) and |:0)
are single-occupied and empty states), we neglect for
simplicity k-dependence of the hybridization V. Note
that similar calculations can be performed for realistic
rare-earth ions, including the case of two magnetic con-
figurations, see Ref. [12].

Following to Ref. [10], we treat the coherent and in-
coherent cases. In the first case a dispersion in the
spectrum of f-electrons occurs. For simplicity this is
supposed to be proportional to the conduction electron
spectrum, Ese = Ef + ek, €x X ti, A = —1 (the f-band
has a hole character). In the incoherent regime A = 0, so
that f-electrons remain localized. Note that in the pres-
ence of the energy gap we always deal with the coherent
regime.

The renormalization of the Coulomb parameter G
and the hybridization V is obtained, similar to Ref. [10],
from the two-particle Green’s function

FC(E) = ({f cim|c} . fim))E (2)

which determines the vertex.
correction with the structure

We obtain the singular
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where ny,, = (clmckm) is the Fermi function. In the
coherent regime, a similar correction occurs from the
dispersion of f-states. The correction (3) contains a
logarithmic Kondo-like divergence owing to charge fluc-
tuations, which is cut at Ey (the latter quantity plays
the role of the external field in the equivalent anisotropic
Kondo model). Unlike the renormalization of Ef, the
renormalizations of V' and G do not contain the degen-
eracy factor of N.

The renormalization of E; owing to spin-flip
processes is obtained in the second order in hybridiza-
tion (cf. [12-14])

SEpm=V* Y

m #m,q

+ ndG. 4)

We have taken into account in Eq. (4) the Hartree renor-
malization of f-level energy, which occurs in the coher-
ent case, £y — Ef + Gn, n being the concentration of
conduction electrons; we put in numerical calculations
n = 1, which corresponds to the Kondo regime.

To derive the scaling equations for the effective model
parameters we use the poor-man scaling approach [15].
Picking out in the integrals with the Fermi functions (3),
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(4) the contributions from the energy layer C < E <
< C + 0C near the Fermi level EF = 0 (C < 0) and
replacing E; — E¢(C),V — V(C),G — G(C) we ob-
tain (cf. Ref. [10])

OE¢(C) _ 2 aG(C)
611]:|C| = p(N-DVAO) +ngpiep O
ov(C)  1-2)
Fmic -~ 1x Y Oe©) (6)
8G(C) _ 2x L,
Oln|C — Ef| 1+|)‘|pG (©), (7)

where p is the bare conduction-electron density of states
at Er. Earlier [3] we have considered the exciton effects
with neglecting spin fluctuations. We will see that the
renormalization (4) results in new essential effects.

We have from Egs. (6) and (7)

Ge) [vie)]* 2
W‘[W]’““Hw ®)

so that G(C) = G(0) in the incoherent regime. We de-
rive from (6) in the incoherent and coherent cases, re-
spectively

V(C) =V(0)|D/w(C) [, (9)
V(C) =V(0)/[1+ G(0)pIn|w(C)/D]], (10)
where w(C) = C — Ef(C), D is a cutoff parameter of

the order of bandwidth (we put in numerical calculations
D = p~! =1). Then we have the closed equation for
w(C). In particular, for the incoherent regime

2pG(0)

Ow(C)
ocC

=1+ (N-1)

pV?(0) ‘ D (11)

When E; lies sufficiently below the Fermi level (the
Kondo regime), the quantity |w(C)| can become small
with decreasing |C|. We can use this condition to define
the boundary between IV and Kondo cases. Formal de-
finition of IV systems is the absence of solutions to the
equation w(C) = 0 which just determines the Kondo res-
onance (cf. Refs. [6, 16]). Physically, Kondo lattice has
a three-peak density of states (two Hubbard bands and
the Kondo resonance), which is similar to the “doped
Mott insulator” (note that in the dynamical mean-field
theory (DMFT) the Hubbard model is reduced to the
Anderson impurity model [17]). On the other hand, IV
state is similar to the phase of strongly correlated metal:
the Kondo peak as a separate solution is absent.
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For G(0) = 0, the boundary condition for the Kondo
state is |E;(0)] > T' = (N — 1)pV?(0). In the oppo-
site IV case |w(C)| remains finite. For G(0) # 0, V(C)
increases during the renormalization process, and the ef-
fective level width I'(C) becomes larger, so that the IV
region becomes more wide. A temperature dependence
of the energy gap (an increase with decreasing temper-
ature) in IV compounds was observed experimentally
in SmBg [18], YbB;2 and Ce4BiPt; [2]. According to
our treatment, the dependence of the effective hybridiza-
tion V(C) is non-monotonous: it passes through a max-
imum.

Now we consider in more detail the incoherent case
which should be realized for diluted systems (the An-
derson’s localization prevents coherence at low temper-
atures). To present numerical results (Figs.1-4) we
use the variable { = In|D/C|. As follows from (9), in
the Kondo case the hybridization parameter V(C) de-
creases practically by a jump when we approach the
point C = E¢(C), see Fig.2. With further decreasing
|C|, a considerable region arises where we have to high
accuracy C = Ef(C) (Fig.1). More exactly, we have
Ow(C)/8C =~ 0, so that we obtain from (11) near the
maximum of w(C)

1/2pG(0)

w(C) ~ —D|(N - 1)pV2(0)/C]| (12)

In this regime V(C) = |C/[(N—-1)g]|"?,
and the effective s — f exchange parameter is
pI(C) = pV?(C)/E¢(C) = —1/(N — 1) = const.

Fig.1. Scaling trajectories —E(§) for V(0) = 0.1, G(0) =
= 0.1, N = 2 in the incoherent case as compared to
the curve |C|/D = exp(—£) (dashed line). The para-
meter values (for the curves from below to above) are
E;(0) = —0.08,—0.1,—0.14

In a standard consideration, the condition C =
E¢(C) determines an energy scale for a crossover to
the regime of a heavy-fermion (Kondo) local Fermi lig-
uid [13]. The “marginal” situation with E;(C) = C
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Fig.2. Dependencies V (£) for the same parameter values
as in Fig.1 (for the curves from below to above)

Fig.3. Scaling trajectories —Ef(¢) for V(0) = 0.05, G(0) =
=0.05, N = 6, E;(0) = —0.09, —0.11, —0.15 in the coher-
ent case

in a whole interval of the cutoff parameter C means an
essentially non-Fermi-liquid (NFL) picture. A similar
mechanism of NFL behavior in magnetic Kondo lattices
was proposed in Refs. [7, 19] where a soft boson was ob-
tained with the characteristic energy @(C) =2 |C|. Note
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Fig.4. Dependencies V (£) for the same parameter values
as in Fig.3
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also that a regime with the rate of the order parame-
ter fluctuations 1/74(T) o T is typical near a quantum
phase transition [20]. Our situation is reminiscent of this
regime in the sense that the characteristic valence fluc-
tuation frequency max(pV?(T'), |E¢(T')|) is proportional
to T (after a natural replacement |C| — T).

Physically, the regime where a typical energy scale
is just the temperature means a classical (Maxwell-
Boltzmann) electron gas (interacting with local mo-
menta): heat capacity is approximately constant etc. Of
course, in a pure form this behavior is never observed
since, according to our results, it takes place only in
a restricted temperature interval. However, we have a
strong deviation from a simple scaling picture where
we just enter strong-coupling regime, a characteristic
“Kondo” temperature being T-independent. In partic-
ular, the Wilson number is nearly constant, but differs
considerably from that in the singlet state (I.; = —00).

A similar “marginal” region in the dependence
E¢(C) occurs not only for the Kondo, but also for IV
state near the critical line (in such a situation, the depen-
dence w(C) has a shallow minimum, and V(C) a sharp
maximum, see Figs.1,2).

To estimate the Kondo temperature we can use Hal-
dane’s arguments for the Anderson model with N = 2
[13]. The generalization to arbitrary N can be per-
formed as (cf. Ref. [21])

Tx ~ D (p|I|N)""N exp (1/pNI), I =V?/E;.  (13)

This expression is formally based on perturbation the-
ory (two-loop scaling). However, Haldane noted that
replacing in this formula both D and Ef by the charac-
teristic energy scale T* = —C, which is determined from
the equation C = E¢(C), yields the correct estimation
for the Kondo temperature. As demonstrated above, in
the presence of exciton effects (the Falicov-Kimball in-
teraction G), a situation is possible where this equation
holds approximately in a whole energy interval. The
energy scale T* where the marginal regime starts is con-
siderably changed by the exciton effects.

In the coherent case the last term in Eq. (5) re-
sults in a smearing of the singularity, especially for small
N. However, with increasing N the dependence E;(C)
(Fig.3) becomes qualitatively similar to that in the in-
coherent case. On the other hand, the dependence V(C)
(Fig.4) is essentially modified even for N — oo. At
C = E¢(C) we have

1=—(N-— l)sz(C)/C — n[G’(O)/V(O)]@V(C’)/c’)(C’. )

14
is obtained in
Bessel and

Solution to this Riccati equation
terms of the imaginary-argument
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Macdonald functions Ip(x) and Kp(z) with
z = 2|(N — 1)pV?(0)C|*/?/[nG(0)], p = 0,1. For
large N, the quantity dV(C)/0C and consequently
V2(£)/E(€) turn out to be practically ¢-linear near the
maximum of w(C). Thus we have a classical electron
liquid with singular interactions which have logarithmic
energy dependencies. With further decreasing |C| we
have from Eq.(6)

av(0)/8C o [C|71/2 = |E;(O)|7/2 (15)

so that the correction to V2(C)/E;(C) is proportional
to |C|1/2.

The d — f Coulomb interaction can strongly renor-
malize hybridization, which leads to the increase of a
characteristic energy scale. In the incoherent regime it
is a width of the resonance, in the coherent one the width
of (indirect) gap or pseudogap [3]. The renormalization
of the fluctuation rate pV2(C') can be very strong (about
by order of magnitude for realistic parameters). The
corresponding temperature dependencies can be found
in both the regimes by the RG approach with the re-
placement |C| — T .

In standard treatments of HF systems, one picks
usually anomalous magnetic contributions to thermo-
dynamic properties and compares them with exact re-
sults in the one-impurity Kondo problem. In partic-
ular, the dependencies of the crystal-field level width
from both ineleastic neutron scattering and nuclear mag-
netic resonance have the form T'(T) oc T'/2. In the
Kondo resonance model such a behavior takes place
above the Kondo temperature Tk, but in some cases
(CeBg, CePd3Bg.6, YbBe;3) the dependence T'/2 takes
place at very low temperatures of a few K [22]. Further,
the characteristic energy scale from 7-linear term in
specific heat is of order of tens of Kelvins, whereas the
temperature where 7y starts to deviate from constant is
just a few of Kelvins. Thus there exists no unique energy
scale. We have demonstrated that, indeed, the infrared
behavior can be essentially different from the simple An-
derson model owing to spin dynamics (see Refs. [7, 19])
and charge fluctuations (exciton effects) considered in
the present work.

Of course, the estimations performed are qualitative
since they are based on a continuation of perturbative
Gellmann-Low scaling function to the strong coupling
region. At the same time, the statement that exciton
effects cannot be described by an universal temperature
independent Tx seems to be reliable itself. Recently,
direct ways of observing the Kondo resonance (STM)
were proposed [23]. As we know, they have been not
yet applied to the IV systems. It would be interesting
to compare the results for Tk of these new experimental
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methods with those from investigating thermodynamic
properties.
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