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We discuss the quantum phase transition which separates a vacuum state with fully-gapped fermion spec-
trum from a vacuum state with topologically-protected Fermi points (gap nodes). In the context of condensed-
matter physics, such a quantum phase transition with Fermi point splitting may occur for a system of ultracold
fermionic atoms in the region of the BEC-BCS crossover, provided the Cooper pairing occurs in the non-s-wave
channel. For elementary particle physics, the splitting of Fermi points may lead to CPT violation, neutrino

oscillations, and other phenomena.
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There are two major schemes for the classification
of states in condensed matter physics and relativistic
quantum field theory: classification by symmetry and
by universality classes.

For the first classification method, a given state of the
system is characterized by a symmetry group H which
is a subgroup of the symmetry group G of the relevant
physical laws (see, e.g., Ref. [1] for symmetry classifi-
cation of superconducting states). The thermodynamic
phase transition between equilibrium states is usually
marked by a change of the symmetry group H. The
subgroup H is also responsible for topological defects,
which are determined by the nontrivial elements of the
homotopy groups m,(G/H); cf. Ref. [2].

The second classification method deals with the
ground states of the system at zero temperature (T' = 0),
i.e., it is the classification of quantum vacua. The univer-
sality class determines the general features of the quan-
tum vacuum, such as the linear response and the en-
ergy spectrum of fermionic excitations. For translation-
invariant systems in which momentum is a well-defined
quantity, these features of the fermionic quantum vac-
uum are determined by momentum-space topology. For
(3+1)-dimensional systems, there are only three basic
universality classes of fermionic vacua [3]: (i) vacua
with fully-gapped fermionic excitations; (ii) vacua with
fermionic excitations characterized by Fermi points (the
excitations behave as massless Weyl fermions close to
the Fermi points); (iii) vacua with fermionic excitations
characterized by Fermi surfaces. [Fermi points p, are
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points in 3-momentum space at which the energy van-
ishes, E(p,) = 0, and similarly for Fermi surfaces S,
with E(p) =0 for p € S,,.]

It may happen that by changing some parameter ¢ of
the system we transfer the vacuum state from one uni-
versality class to another, without changing its symme-
try group H. The point ¢, where this zero-temperature
transition occurs, marks the quantum phase transition.
For T # 0, the phase transition is absent, as the two
states belong to the same symmetry class H. Hence,
there is an isolated singular point (g.,0) in the (¢, T)
plane. Two examples of a quantum phase transition are:
1. the Lifshitz transition in crystals, at which the Fermi
surface changes its topology or shrinks to a point; and 2.
the transition between states with different values of the
Hall (or spin-Hall) conductance in (2+1)-dimensional
systems.

In this Letter, we discuss the quantum phase transi-
tion between a vacuum with fully-gapped fermionic ex-
citations and a vacuum with Fermi points. At the tran-
sition point ¢ = g¢., a topologically-trivial Fermi point
emerges from the fully-gapped state. This marginal
Fermi point then splits into two or more topologically-
nontrivial Fermi points (see Figure). The topologically-
protected Fermi points give rise to anomalous proper-
ties of the system in the low-temperature regime; cf.
Sec. 7.3.2 of Ref. [4] and Part IV of Ref. [3].

These effects may occur in a system of ultracold
fermionic atoms in the region of the BEC-BCS crossover
in a non-s—wave Cooper channel. Superfluidity in the
BEC regime and the BEC-BCS crossover has been ob-
served for “°K and SLi atoms [5-9]. In these exper-
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Quantum phase transition at ¢ = ¢. between a fully-
gapped vacuum and a vacuum with topologically-protected
Fermi points (gap nodes). At ¢ = ¢., there appears a mar-
ginal Fermi point with topological charge N = 0 (inset at
the top). For ¢ > g¢., the marginal Fermi point has split
into two Fermi points characterized by nonzero topological
invariants N = +1 (inset on the right). For a system of ul-
tracold fermionic atoms qualitatively described by Hamil-
tonians (1) and (9), the critical parameter is g. = 0 [note
that eight Fermi points emerge for the case of Hamiltonian
(9)]. For Dirac fermions with CPT violation in Hamil-
tonian (6), the parameter ¢ is chosen as ¢ = |b| and the
critical parameter is g. = M

iments, a magnetic-field Feshbach resonance was used
to control the interactions in the s-wave channel. For
the case of s-wave pairing, there are fully-gapped vacua
on both sides of the crossover and there is no quan-
tum phase transition. If, however, the pairing occurs in
a non-s-wave channel, a quantum phase transition may
be expected between the fully-gapped state and the state
with Fermi points. It was reported recently [10, 11] that
three p—wave Feshbach resonances were found for ®Li
atoms. This suggests the possibility of future observa-
tions of non-s-wave pairing and of the quantum phase
transition associated with the splitting of Fermi points.

Here, we will discuss two examples of such a transi-
tion, using for simplicity p—wave spin-triplet pairing and
their possible analogs in relativistic quantum field the-
ory. We will argue in the following that a similar quan-
tum phase transition characterized by Fermi point split-
ting may occur for the Standard Model of elementary
particle physics [12], but refer the reader to Refs. [13 -
15] for further details. In fact, condensed-matter physics
provides us with a broad class of quantum field theo-
ries not restricted by Lorentz invariance, which allows
us to consider many problems in the relativistic quantum
field theory of the Standard Model from a more general

perspective. Just as for nonrelativistic systems, the basic
properties of relativistic quantum field theories (includ-
ing quantum anomalies) are determined by momentum-
space topology, which classifies the relativistic vacua ac-
cording to the same three universality classes.

Since we are only interested in effects determined by
the topology and the symmetry of the fermionic Green’s
function G(p), we do not require a special form of the
Green’s function and can choose the simplest one with
the required topology. First, consider the Bogoliubov—
Nambu Hamiltonian which qualitatively describes fermi-
onic quasiparticles in the axial state of p—wave pair-
ing. This Hamiltonian can be applied to both the
Bardeen—Cooper—Schrieffer (BCS) and Bose-Einstein
condensation (BEC) regimes, and also to superfluid 3He-
A [4]. Specifically, the Bogoliubov—-Nambu Hamiltonian
is given by:

H =
p*/2m — ¢

_ CJ_p'(/e\]_ +’Lé\2)
= ( o p- (G i) ) (1)

—|p|?/2m +q

and G 1(iw,p) = iw — H(p), with i = 1. Considered
are fermionic atoms of mass m with a given direction of
the atomic spin, assuming that only these atoms expe-
rience the Feshbach resonance. The orthonormal triad
(€1, €3, 1 =€; x€;3) and the maximum transverse speed
¢, of the quasiparticles characterize the order parameter
in the axial state of triplet superfluid. The unit vector
1 corresponds to the direction of the orbital momentum
of the Cooper pair or the diatomic molecule. We fur-
ther assume that the parameter ¢ is controlled by the
magnetic field in the vicinity of the Feshbach resonance.

The energy spectrum of these Bogoliubov-
Nambu fermions is

E*(p) = (E—q>2+<ﬁ (p XT)2- (2)

2m

The BCS regime occurs for ¢ > 0, with the parameter ¢
playing the role of a chemical potential. In this regime,
there are two Fermi points, i.e., points in 3-momentum
space with E(p) = 0. For the energy spectrum (2), the
Fermi points are p; = pFT and p = —pFT, with Fermi
momentum pr = 4/2mgq.

For a general system, be it relativistic or nonrelativis-
tic, the stability of the a-th Fermi point is guaranteed
by the topological invariant N,, which can be written
as a surface integral in frequency-momentum space. In
terms of the fermionic propagator G = G(po, p1, D2, D3),
for p, = (w, p), the topological invariant is [3]
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where ¥, is a three-dimensional surface around the iso-
lated Fermi point p,, = (0,p.) and ‘tr’ stands for the
trace over the relevant spin indices.

For the case considered, the trace in Eq. (3) is over
the Bogoliubov-Nambu spin and the two Fermi points py
and p, have nonzero topological charges N; = +1 and
N, = —1. The density of states in this gapless regime
is given by v(E) o« E2. At ¢ = 0, these two Fermi
points merge and form one topologically-trivial Fermi
point with N = 0. This intermediate state, which ap-
pears at the point of quantum phase transition (g. = 0),
is marginal: the momentum-space topology is trivial and
cannot protect the vacuum against decay into one of the
two topologically-stable vacua. For ¢ < 0, the marginal
Fermi point disappears altogether and the spectrum be-
comes fully-gapped. In this topologically-stable fully-
gapped vacuum, the density of states is drastically differ-
ent from that in the topologically-stable gapless regime:
v(E) = 0 for E < |g|. All this demonstrates that the
quantum phase transition considered is of purely topo-
logical origin.

Note that if a single pair of Fermi points appears in
momentum space, the vacuum state has nonzero internal
angular momentum along i, i.e., this quantum vacuum
has the property of an orbital ferromagnet. Later, we
will discuss an example with multiple Fermi points, for
which the total orbital momentum is zero and the vac-
uum state corresponds to an orbital antiferromagnet.

We now turn to elementary particle physics [12]. It
appears that the vacuum of the Standard Model above
the electroweak transition (vanishing fermion masses)
is marginal: there is a multiply degenerate Fermi point
p = 0 with topological charge N = 0. It is therefore
the intermediate state between two topologically-stable
vacua, the fully-gapped vacuum and the vacuum with
topologically-nontrivial Fermi points. In the Standard
Model, this marginal Fermi point is protected by sym-
metries, namely the continuous electroweak symmetry
(or the discrete symmetry discussed in Sec. 12.3.2 of
Ref.[3]) and the CPT symmetry.

Explicit violation or spontaneous breaking of one of
these symmetries transforms the marginal vacuum of the
Standard Model into one of the two topologically-stable
vacua. If, for example, the electroweak symmetry is bro-
ken, the marginal Fermi point disappears and the fermi-
ons become massive. This is known to happen with
the quarks and electrically charged leptons below the
Mucema B MIAT® Tom 80
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electroweak transition. If, on the other hand, the CPT
symmetry is violated, the marginal Fermi point splits
into topologically-stable Fermi points. One can specu-
late that the latter happens for the Standard Model, in
particular with the electrically neutral leptons, the neu-
trinos [13—-15]. The splitting of Fermi points may also
give rise to a CPT-violating Chern-Simons-like term in
the effective gauge field action [16, 17], as will be dis-
cussed later.

Let us first consider this scenario for a marginal
Fermi point describing a single pair of relativistic chiral
fermions, that is, one right-handed fermion and one left-
handed fermion. These are Weyl fermions with Hamil-
tonians Hyghy = o - p and Hysy = —0 - p, where &
denotes the triplet of Pauli matrices and natural units
are employed with ¢ = A = 1. Each of these Hamiltoni-
ans has a topologically-stable Fermi point p = 0. The
corresponding inverse Green’s functions are given by

Gt (iw,p) =iw—0o-p
right ) )
(4)

Gl_eflt(iw,p) =iw+o-p.

The positions of the Fermi points coincide, p; = p2 = 0,
but their topological charges (3) are different. For this
simple case, the topological charge equals the chirality
of the fermions, N, = C, (i.e., N = +1 for the right-
handed fermion and N = —1 for the left-handed one).
The total topological charge of the Fermi point p = 0 is
therefore zero.

The splitting of this marginal Fermi point can be de-
scribed by the Hamiltonians Hyigne = o - (p — p1) and
Hyesy = —0 - (p — p2), with p; = —p2 = b from momen-
tum conservation. The real vector b is assumed to be
odd under CPT, which introduces CPT violation into
the physics. The 4 x 4 matrix of the combined Green’s
function has the form

G iw,p) =

iw—0o-(p—Db) 0 5)
0 iw+o-(p+b) '
Equation (3) shows that p; = b is the Fermi point with
topological charge N = +1 and ps = —b the Fermi
point with topological charge N = —1.
Let us now consider the more general situation with

both the electroweak and CPT symmetries broken. The
Hamiltonian has then an additional mass term,

H:(a-(p—b) M ):
M —o-(p+b)

= Hpirac —I12® (¢ - b). (6)
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This Hamiltonian is the typical starting point for inves-
tigations of the effects of CPT violation in the fermionic
sector (see, e.g., Refs. [18, 19] and references therein).
The energy spectrum of Hamiltonian (6) is

Ei(p)=M*+|p*+¢+

i2q,/M2+(p-B)2, (7)

with b = b/|b| and ¢ = |b| > 0.

Allowing for a variable parameter g, one finds a quan-
tum phase transition at g. = M between fully-gapped
vacua for ¢ < M and vacua with two Fermi points for
q > M. These Fermi points are given by

pl:‘*’E qu_M2a

8
Pzz—g q> — M2, ©

Equation (3), now with a trace over the indices of the
4 x 4 Dirac matrices, shows that p; is the Fermi point
with topological charge N = +1 and p2 the Fermi
point with topological charge N = —1 [see Figure for
b = (0,0,1)]. The magnitude of the splitting of the two
Fermi points is given by 2+/¢2 — M2. At the quantum
phase transition ¢. = M, the Fermi points with oppo-
site charge annihilate each other and form a marginal
Fermi point pg = 0. The momentum-space topology of
this marginal Fermi point is trivial (topological invariant
N=+41-1=0).

The full Standard Model contains eight pairs of chi-
ral fermions per family and a quantum phase transition
can be characterized by the appearance and splitting
of multiple marginal Fermi points. For systems of cold
atoms, an example is provided by another spin-triplet
p—wave state, the so-called a—phase with orbital anti-
ferromagnetism. The Bogoliubov-Nambu Hamiltonian
which qualitatively describes fermionic quasiparticles in
the a—state is given by [1, 4]:

:( pl?/2m —g (z-p)cLN??> )
(5-p)' er/V3 —lpP/2m+q )’

with [p|> = p2 +p} +p, and T -p = ozp, +
+ exp(27i/3) oypy + exp(—2mi/3) o,p, .

On the BEC side (¢ < 0), fermions are again fully-
gapped, while on the BCS side (¢ > 0), there are eight
Fermi points p, (¢ = 1,...,8), situated at the ver-
tices of a cube in momentum space [1]. The fermionic
excitations in the vicinity of these points are left- and
right-handed Weyl fermions. In terms of the Cartesian
unit vectors (X, ¥, Z), the four Fermi points with right-
handed Weyl fermions (C, = +1, for a = 1,... ,4) are
given by

p1 =pr (+X +¥ +2)/V3,

P2 =pr (+X - ¥ —2)/V3, (10)

ps =pr (-X - +2)/V3,

P+ =pr (-X+5 —2)/3,
while the four Fermi points with the left-handed Weyl
fermions (C, = —1, for a = 5, ... , 8) have opposite vec-
tors.

Since the quantum phase transition between the BEC
and BCS regimes of ultracold fermionic atoms and the
quantum phase transition for Dirac fermions with CPT
violation are described by the same momentum-space
topology, we can expect common properties. An ex-
ample of such a common property would be the axial
or chiral anomaly. For quantum anomalies in (3+1)—
dimensional systems with Fermi points and their reduc-
tion to (2+1)—dimensional systems, see, e.g., Refs. [3, 20]
and references therein.

One manifestation of the anomaly is the topological
Wess—Zumino—Novikov-Witten (WZNW) term in the
effective action. The general expression for the WZNW
term is represented by the following sum over Fermi
points (see, for example, Eq. (6a) in Ref. [21]):

Swznw = (12n%)7! ZNa X
a

X /d% dt d7 pg - (0:Pa X OtPa)- (11)

Here, N, is the topological charge of a-th Fermi point
and 7 € [0, 1] is an additional coordinate which parame-
trizes a disc, with the usual spacetime at the boundary
T=1

In the Standard Model, Eq.(11) can be seen to give
rise to an anomalous Chern—Simons-like action term in
the gauge-field sector. Start, for simplicity, from the
spectrum of a single electrically charged Dirac fermion
(charge e) and again set ¢ = i = 1. In the presence of the
vector potential A of a U(1) gauge field, the minimally-
coupled version of Hamiltonian (6) is

H =
:(a'-(p—eA—b) M ) (12)
M —o-(p—eA+Db)

The positions of the Fermi points for ¢ = |b| > M are
then shifted due to the gauge field,

po =p) +eA = +b /2 — M2 + €A, (13)

with a plus sign for @ = 1 and a minus sign for a = 2.
This result follows immediately from Eq. (8) by the
Mucema B AIAT® Ttom 80
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minimal substitution p, — p, — €A, consistent with
the gauge principle. For relativistic quantum field the-
ory and with different charges e, at the different Fermi
points, one has the general expression p, = pgo) + elA.

Next, insert these Fermi points into formula (11)
and assume the charges to be 7 dependent, so that
Po = pl(z )+ eq(7) A. Specifically, we use a parametriza-
tion for which the charges e,(7) are zero at the center
of the disc, e,(0) = 0, and equal to the physical charges
at the boundary of the disc, e,(1) = e,. From Eq. (11),
one then obtains the general form for the Abelian Chern—
Simons-like term

Scs—tike = (2472)

Z N, e X
X / dzdt p¥) - (A x BA). (14)
This result has the “relativistic” form
S cs—like = /d4$ k, e?7 A, (z) 8,4s(z), (15)

with gauge field A, (z), Levi-Civita symbol e**#?, and
a purely spacelike “vector” k,,

k, = (0,k) = ( (247?) Zp(o) ez N, ) (16)

Note that only gauge invariance has been assumed in
the derivation of Eq. (16). As shown in the Appendix of
Ref. [13], the Chern—Simons vector (16) can be written
in the form of a momentum-space topological invariant.

Returning to the case of a single Dirac fermion with
charge e and using Eqgs. (16) and (8), one finds that the
CPT-violating Chern—-Simons parameter k can be ex-
pressed in terms of the CPT-violating parameter b of
the fermionic sector,

2

= 1;? 8(g— M) b /@ — M2, (17)
This particular contribution to k comes from the split-
ting of a marginal Fermi point, which requires |b| = ¢ >
> M, as indicated by the step function on the right-hand
side [#(z) =0 for z < 0 and 6(z) =1 for z > 0].

In the context of relativistic quantum field theory, the
existence of such a nonanalytic contribution to k has also
been found by Perez-Victoria [22] and Andrianov et al.
[23] using standard regularization methods, but with a
prefactor larger by a factor 3 and 3/2, respectively. The
result (17), on the other hand, is determined by the gen-
eral topological properties of the Fermi points [13] and
applies to nonrelativistic quantum field theory as well.
In condensed-matter quantum field theory, the result has
Mucema B MIAT® Tom 80
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been obtained without ambiguity, since the microphysics
is known at all scales and regularization occurs naturally.

For the “ferromagnetic” quantum vacuum of Hamil-
tonian (6), the Chern—Simons vector k obtained from
Eq.(16) by summation over all Fermi points (8) is
nonzero and given by Eq. (17). For the “antiferro-
magnetic” a—phase vacuum of Hamiltonian (9), the vec-
tor k vanishes, because e2 = 1 for the fermion charges
e, = £1 and p1 + p2 + ps + ps4 = 0 for the tetrahedron
(10). A similar situation may occur for the Standard
Model: antiferromagnetic splitting of the Fermi point
without induced Chern—Simons-like term [13]. The an-
tiferromagnetic splitting may, however, lead to other ob-
servable effects such as neutrino oscillations [14, 15].

In conclusion, one may expect quantum phase transi-
tions in systems of ultracold atoms, provided the pairing
occurs in the non-s-wave channel. The quantum phase
transition separates an anomalous-free fully-gapped vac-
uum on the BEC side and a gapless superfluid state on
the BCS side, which is characterized by Fermi points
and quantum anomalies. This phenomenon is general
and may occur in many different systems, including the
vacuum of the relativistic quantum field theory relevant
to elementary particle physics.
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