Pis'ma v ZhETF, vol. 80, iss. 5, pp-416 —419

© 2004 September 10

State-dependent dynamical variables in quantum theory
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State-dependent local dynamical variables (LDV) sharply differ from the ordinary operators of quantum
mechanics. The N-level model system shows the physical importance of such operators in the complex pro-
jective Hilbert state space CP(N — 1). The process of the quantum measurement in terms of the LDV is

described.
PACS: 03.65.—w

In our macroscopic experience we have the solid
pseudo-Euclidian space-time structure. Physical con-
servation laws rid us from doubts about the macroscopic
system identification. The identification of the quantum
system at very short and at cosmic distances is not so
simple. How may one be sure that, say, a right helicity
photon has been send by Alice? Physically this ques-
tion may be formulated as follows: what is an objective
criterion for the identity of quantum system, or, what
is the physical mechanism of the self-identification (self-
conservation) of a quantum system? We can no more
rely upon the space-time symmetries since just these
properties should be established in some approximation
a posteriori. In such a situation one should have some
conservation laws relying upon the geometry of the in-
trinsic transformation groups and its sub-manifolds.

I formulate the covariant dynamics of the N-level
quantum system and corresponding local dynamical
variables (LDV) based purely on the SU(N) geome-
try. Since the quantum states are rays, in fact only
the transformations from the coset sub-manifold G/H =
=U(N)/U(1) x U(N —1) = CP(N —1) act effectively
on the rays of states. However LDV (defined in terms of
tangent vectors to CP (NN — 1)) being expressed in terms
of local quantum coordinates (7! = ¥1/¥° ... 7N-1 =
= ¥N-1/90) are subject to the action of whole SU(N)
group. Hence we may assume that SU(N) transforma-
tions of the N-level quantum system are locally equiv-
alent to a definite motion of the LDV in CP(N — 1)
(the “super-relativity” principle [1]). Therefore parallel
transport in CP(N — 1) is the method of N-level quan-
tum system identification, expressing the conservation
law of the LDV, should be observable and curvature-
dependent.

1. T would like attract attention to the global prop-
erty of the internal symmetries in quantum mechanics.
They have been realized mostly in imitative of the form

of the space-time symmetries. Namely, their operators
give a linear representation of the corresponding groups.
To my mind the nonlinear realization seems to be actu-
ally capable of shedding light on the measurement as an
objective process [2].

In fact the nonlinear group realizations have been
already used in the framework of the phenomenological
Lagrangians method in QFT [3] and in the theory of
spin wave interaction [4]. The breakdown of the “chi-
ral” dynamical group SU(N) up to the isotropy group
H =U(1) x U(N — 1) was proposed [1] but in an ab-
stract form without clear physical argumentation. I will
now show that in simple optical measurement the state-
dependent LDV play the key role in the objective inter-
pretation of the quantum theory.

My aim is to calculate the phase difference accumu-
lated during the parallel transport of the LDV corre-
sponding to light polarization along different paths in
CP(1). Let me describe the polarization optics mea-
surement in the terms of LDV. The model setup pro-
viding the unitary evolution of the polarization state
of light is simple. A fixed Cartesian reference frame
(0, z,y, 2) in physical space will be used. Initially one
has a beam of light in a linear polarization state in
z-direction |z) = \/iﬁ(lR) +|L)) = %(I,I)T propa-
gating along z-axes. Then the polarization states in
the y-direction is |y) = \’/—%(|R) - |LY) = %(—i,i)T,
and then |R) = (1,0)T,|L) = (0,1)T. The coher-
ent superposition state will be denoted as usual |¥) =
(B9, 91T, The Poincaré sphere refers to the coordi-
nates (o, 81, 82, 83) in the iso-space of the polarization. In
general the coherence vector lies on the isotropy “light
cone” 83 — 52 — 52 — s2 = 0 where s2 = I? = (J|0)
is the square of the beam intensity. It means the co-
herence vector may fall into the Poincaré sphere under
non-unitary evolution. I will restrict myself to the uni-
tary one.
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The initial state |z) is modulated passing through
an optically active medium (say using the Faraday ef-
fect in YIG film magnetized along the main axes in the
z-direction by a harmonic magnetic field with frequency
Q and the angle amplitude ). Formally this process
may be described by the action of the unitary matrix
hos, belonging to the isotropy group of |R) [1]. Then
the coherence vector will oscillate along the equator of
the Poincaré sphere. The next step is the dragging of
the oscillating state |@'(£)) = hos,|@) with frequency w
up to the “north pole” corresponding to the state |R).
In fact this is the motion of the coherence vector. This
may be achieved by the variation of the azimuth of the
linear polarized state from /2 = —m /4 up to /2 = = /4
with help of the dense flint of appropriate length embed-
ded into the sweeping magnetic field. Further this beam
should pass the A\/4 plate. This process of variation
of the ellipticity of the polarization ellipse may be de-
scribed by the unitary matrix 503'1 belonging to the coset
homogeneous sub-manifold U(2)/U(1) x U(1) = CP(1)
of the dynamical group U(2) [1]. This dragging with-
out modulation leads to the evolution of the initial state
along the geodesic of CP(1) and the trace of the coher-
ent vector is the meridian of the Poincaré sphere between
the equator and one of the poles. The modulation de-
forms both the geodesic and the corresponding trace of
the coherence vector on the Poincaré sphere during such
unitary evolution.

The action of the A\/4 plate depends upon the state
of the incoming beam state (the relative orientation of
the fast axes of the plate and the polarization of the
beam). Furthermore, only relative phases and ampli-
tudes of photons in the beam have a physical meaning for
the \/4 plate. Neither the absolute amplitude (intensity
of the beam), nor the general phase affect the polariza-
tion character of the outgoing state. It means that the
device action depends only upon the local coordinates
7! = /%0 € CP(1). Small relative re-orientation of
the A/4 plate leads to a small variation of the outgo-
ing state. This means that the A/4 plate re-orientation
generates the tangent vector to CP(1). It is natural to
discuss the two components of such a vector: velocities
of the variations of the ellipticity and of the azimuth
(inclination) angle of the polarization ellipse. They are
examples of LDV. The comparison of such dynamical
variables for different coherent states requires that affine
parallel transport agrees with the Fubini-Study metric.
The deep reason for this is as follows.

2. Let us assume that initial state is (7},..., 7% 1)
and the final state is (7h,...,75 ‘). The state
(k... ,ﬂg ~1) may be reached from any different state

(%, ..., 74 1). In order to know the source of this
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state there should be some mark or “key”. This may
be achieved by establishing a set of constrains which an
observer agrees to judge as “full enough” for the iden-
tification. Here we have a subjective factor. But it may
be avoided if we chose the intrinsic invariants of the
CP(N —1) geometry. Then the subjective element will
disappear and, hence, one will have an objective crite-
rion for the identification. Formally it is based upon
Cartan’s method of moving frame eliminates the neces-
sity of the “second particle” as a reference frame for
the “first” one [5]. Generally the “minimally full” de-
scription of the quantum state in CP(N — 1) requires
the adjoint representation of SU(N) in RV~ field pa-
rameter space. In fact these effective multipole fields
describe the intensity of the device action. The tangent
vector fields (differential operators) D, = @2%; + c.c.
where @}, are as follows:
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These vector fields replace in my approach the Pauli
matrices of AlgSU(2), the Gell-Mann matrices of
AlgSU (3), etc. [1]. The LDV are state-dependent, i.e.
local in CP(N — 1) and their expectation values (the
scalar product in the sense of the Fubini-Study metric)
are not bi-linear in general. Such expectation values are
similar to an expectation value in the modified quantum
mechanics of Weinberg [6]. The path-dependent parallel
transport of the LDV in the affine connection
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agrees with the Kihlerian metric (Fubini-Study metric)
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as will be shown case of CP(1). Here k = r~* is the cur-
vature of the sphere serving as a model of CP(N — 1)
through the stereographic projection. I will assume tem-
porary that » = 1 for simplicity.

The essential differences between my approach and,
say, the approach of Anandan and Pati [7] are firstly, that
I use the parallel transport of dynamical variables local
in CP(1) instead of the quantum state parallel trans-
port. Secondly, the geometric frequency I use is local
and it is applicable to any superposition state, whereas
the Anandan-Pati “reference-section” of the state is bi-
local and it is singular for the orthogonal initial and
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final states. Note, Berry’s [8, 9] and the Aharonov-
Anandan [10, 11] “parallel transport” laws of the quan-
tum state are defined in original Hilbert space. This kind
of the parallel transport is not an object of the intrinsic
geometry of a parameter space (Berry) or the projective
Hilbert state spaces (Aharonov-Anandan); see for exam-
ple the explanation in [12]. Such a definition discards the
dynamical phase shift and extracts the pure topological
consequences of the rotations of polarizers, A/4 plates,
etc. However there are some reasons to keep dynamics
together with geometry [10, 1, 13]. In particular the fun-
damental importance of the complex projective geome-
try of the state space CP(N — 1) [11, 14, 2, 1, 15, 13]
strongly suggest working in the intrinsic geometry of
CP(N —1) associated with the quantum dynamics.

3. Now I introduce the parallel transporting real dy-
namical variable T = TI% + T1x afl* , T = (TYH)*
assuming that T obeys the following equations

1

% + FilTlﬂ =0, c.c 4)
These equations have exact solutions along a geodesic
of CP(1): T(s) = £(1 + tan?(wt)) + in(1 + tan®(wt)).
The scalar product G-T(s)T**(s) = €2 + n? is the
invariant of the parallel transport.

The modulation of the polarization plane orientation
deforms the geodesic y(t) to f(t). The equations (4)
have for such path of the parallel transport only the
numerical solutions which we shall call Z!(t),c.c.. Let
me to show the difference between the parallel trans-
ported vectors T'(s) along the geodesic (t) and the
vector S = B! — I'l,Eldn! pointwise “shifted” from
the deformed path f(t) to the “reference” geodesic 7(t)
where dr! = 7wl(f(t)) — 7' (y(t)). It means all local
tensors and I'Y, were calculated on the “reference” geo-
desic. The angle between these two vectors along the
“reference” geodesic will be expressed through cos x(t):

LT k*

dn!

The cosine of the angle between the exact solution of the
equation Ti(y(t)) and the numerical solution Z**(f(t))
for the parallel transport along the deformed geodesic is
shown in the picture Fig.1.

The result is very interesting: all vectors parallel
transported along different paths look like a smoothly
opening “umbrella” along the geodesic. At § = w/2 the
parallel transported dynamical variable along one of the
deformed geodesics f(t) are orthogonal (in the sense of
the Fubini-Study metric) to the “handle” of the “um-
brella”; the parallel transported vector along the geo-
desic. In fact this means that the result of the parallel
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Fig.1. The square of the cosine of the observable angle be-
tween two parallel transported vectors along the geodesic
~(0,7/2) and deformed geodesic f(0,7/2) against the angle
length in radians of the geodesic. The relationship between
frequencies is as follows: Q = 107 radians/s, w = 7 radi-
ans/s

transport is local: this is uniquely defined by the geo-
desic issuing from the initial point and by the dynamical
variable (tangent vector). It looks, as a preliminary con-
clusion, like a “decoherence process” in the projective
Hilbert state space.

Let me consider briefly the expected phase modula-
tion shift, accumulated during the parallel transport of
the velocities of the ellipticity and the inclination angle
in the real experiment described in the Section 1. The
key role belongs to the curvature x which I put equal to
1 in previous formulas. Now I assume that curvature of
the state space C P(N — 1) is the measure of the correla-
tions between the different LDV. Volkov et al used the
sphere curvature as a phenomenological constant of the
spin waves interaction [4]. I put the curvature as the fine
structure constant k = e?/hc ~ 0.007. The reason for
this choice will be discussed elsewhere. If the modulation
frequency Q = 40007 radians/s has the angle amplitude
B = 0.017 radians and the dragging frequency w = 107
radians/s, the behavior of velocities of the ellipticity and
the azimuth angle is shown in the Figs.2,3.

All LDV discussed above, say the velocity of el-
lipticity e variation are measurable. Since now % is
curvature-dependent, it differs from the “flat” parallel
transport. Then the instant frequency (the speed of the
modulation phase variation) is the function of the € and
0 and it should contain besides the frequencies w and
B the frequency xOf2. It would be interesting to mea-
sure it in some experiment. The modulation frequency
to this aim should be essentially higher than I used in
my calculations.

The topological character of the Berry phase [8, 9],
Aharonov-Anandan [10, 11] and the Wilczek-Zee phase
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Fig.2. The time dependence of the ellipticity velocity. Ini-
tial conditions: ¢ = R(de/dt) = —31.4 radians/s, n =
= Q(de/dt) =0

Fig.3. The time dependence of the azimuth angle veloc-
ity. Initial conditions: ¢ = R(df/dt) = 213.5 radians/s,
n==S(df/dt) =0

[16] arise as a macroscopic environment reaction on the
quantum dynamics of an “immersed” quantum system.
The anholonomies of the “parallel transport” of the state
vector are expressed as some effective gauge fields re-
flecting the topological character of the transformation
groups of orientations of macroscopic elements (polariz-
ers, A/4 plates, etc.) of the quantum setup. Therefore
it is not so strange that there are close classical analo-
gies of the topological phases in classical physics (e.g.
Hannay angle [9]). This is the reason why the dynamic
phase should be discarded in order to get a definite geo-
metric (topological) phase. Therefore, in general it is
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impossible of course, to define these gauge fields in some
fundamental sense. But such gauge fields may by really
fundamental in two important cases of the complex pro-
jective state space CP(N — 1). Firstly, since we believe
that rays of quantum states are the fundamental notions
at any level. Secondly, CP(1) may be treated as the
Qubit coherent state space under quantum information
processing. In these cases there arises a new geometro-
dynamics phase which relates to the affine gauge field.
Corresponding gauge fields associated with the curva-
ture of CP(N — 1) are state-dependent and they realize
the local gauge transformation of the moving quantum
frame in CP(N — 1) [1, 15, 13, 17]. They are akin to
the Wilczek-Shapere gauge fields related to the problem
of a deformable body in fluid [18].

I sincerely thank Yakir Aharonov for the discussion
of non-linear modification of quantum theory and Larry
Horwitz for numerous useful discussions and notes.
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