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Radiative corrections to the muon decay spectrum due to soft and virtual electron-positron pairs are calcu-
lated within the next-to-next-to-leading approximation. The effect is relevant for modern precision experiments

on the decay spectrum.
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1. Introduction. The experiment TWIST (TRIUMF
Weak Interaction Symmetry Test) [1, 2] is currently run-
ning at Canada’s National Laboratory TRIUMF. It is
going to measure the muon decay spectrum [3, 4] with
the accuracy level of about 1-10~%. That will make a
serious test of the space—time structure of the weak in-
teraction. The experiment is able to put stringent limits
on a bunch of parameters in models beyond the Standard
Model (SM), e.g., on the mass and the mixing angle of a
possible right-handed W-boson. To confront the exper-
imental results with the SM, adequately accurate the-
oretical predictions should be provided. This requires
to calculate radiative corrections within the perturbative
Quantum Electrodynamics (QED). Here we will present
analytical results for two specific contributions, related
to radiation of virtual and soft real electron—positron
pairs. The corrections under consideration are of the
order O(a?), where « is the fine structure constant.

The contributions of virtual ptp~, 7777, and
hadronic pairs were found [5] to be small compared with
the 1-10~* precision tag of the modern experiments.
The contribution of ete™ pairs is enhanced by powers
of the large logarithm L = In(m2 /m2) ~ 10.66. Analy-
sis of the leading and next—to—leading terms from this
correction in Refs. [6, 7] has shown that the numerical
effect is not as small as for other leptonic flavors, and it
should be taken into account. Comparison of the lead-
ing and next-to-leading contributions revealed a poor
convergence of the series in L. Calculation of the terms
without the large logarithm was found to be desirable.

Within the SM, the differential distribution of elec-
trons (summed over electron spin states) in the polarized
muon decay can be represented as

d2 l"[.l,:F —eTuvp

=T [F(2) £ cP.G()],
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where m, and m. are the muon and electron masses; G
is the Fermi coupling constant; 8 is the angle between
the muon polarization vector P, and the electron (or
positron) momentum; E. and & are the energy and the
energy fraction of e*. Here we adopt the definition of
the Fermi coupling constant following Ref. [8]. Functions
F(z) and G(z) describe the isotropic and anisotropic
parts of the spectrum, respectively. Within perturba-
tive QED, they can be expanded in series in a:

F©) = fran(@) + 310 + (52 ) fale) + O(a),

and in the same way for G(z). Among different contri-
butions into the functions F(z) and G(z) (see Ref. [6]
for details and discussion), there are ones related to
electron—positron pair production. In this Letter we will
consider the effect of soft and virtual ete™ pairs.

2. Soft ete™ Pairs. The process of real pair produc-
tion does not reveal any infrared singularity, contrary
to the case of photon radiation. Nevertheless, a separate
consideration of soft pair emission can be of interest. In
fact, ete™ pairs with energy below a certain threshold
can’t be observed in experiments with muons decaying
at rest. So, the corresponding contribution is a specific
correction to the measured decay spectrum. Moreover,
the behavior of the real pair emission in the soft limit is
not smooth. An integration over the domain between the
threshold of real pair production and a certain cut—off
on the maximal energy of the soft pair is desirable.

The maximal energy of the soft pair is assumed to
be large compared with the electron mass:
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Due to the smallness of the pair component energies,
the matrix element M of the process

1= (p) = e7(q) + vu(re) + ve(r2) + e (p4) + e (p-)
can be expressed as a product of the matrix element M,
of the hard sub—process (the non-radiative muon decay)
and the classic accompanying radiation factor:

dTrox
M = Mo~ o(py )7 u(p-)Jy, k=py+p_,

where p, _ are the momenta of the positron and electron
from the created pair. The radiation factor reads

A
Bopk— 1k gk + k2

Performing the covariant integration of the summed
over spin states modulus of the matrix element over the
pair components momenta, we obtain

2

k*
Do) ule-)* = 4@ip” + plp - 5 9
spin
d3p d3 . . kz .
/ pj: 0 &(p ++p——k)(pip_+p+p’i—79” )
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It is convenient to parameterize the phase volume of the
total pair momentum as

d*k = dkok>dk|dQy = nwdkodk® \/ k3 — k2 dcydgy,,

where a trivial integration over the azimuthal angle can
be performed: [ d¢y — 2m. Now I integrate over the to-
tal pair momentum with the condition (2) (kg = EP¥r).
In this way I got the following result for the soft pair
contribution:

dFSP B dI-\Born Sp
dedx ~ dedx ’
dI‘\Born m2
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So we calculated explicitly all the terms in 65 except

the ones suppressed by the small factors (a/7)?m2/m?,
and (a/7)2A.

3. Virtual ete™ Pair. We will use here the substi-
tution suggested by J.Schwinger for the photon propa-
gator (with 4-momentum k) corrected by a one-loop
vacuum polarization insertion:

1
1 a [ dvp(v) 1 ()
k2 — A2 +40 1—v2 k2 - M2+i0’
0
4m3 2 1
M= 2% =-—-(1-v¥)2-v*
M )= 2 - (-2 ),

where my is the mass of the fermion in the loop. Using
the substitution, I reproduced the known [9, 10] asymp-
totic expressions for the O(a?) virtual pair contributions
into the Dirac form factor of muon (see Appendix B in
preprint [11]).

The standard technique of integration over Feynman
parameters can be used here. We are interested in the
region of electron energy fractions z >> m./m,. Analyt-
ical expressions for the relevant integrals in this region
can be found in preprint [11]. As concerning the region
of small electron energy fractions, it requires a more
accurate treatment. But the differential width there is
rapidly decreasing (see i.e. the Born-level functions in
Eq. (3)), and the contribution of this region into the total
width is also suppressed by the mass ratio.

Formally, we have an ultra violet singularity in the
virtual pair correction. The Fermi theory is not renor-
malizable in the general case. But for the muon decay
everything is safe, since the standard renormalization of
the electron and muon wave functions removes the sin-
gularity [12]. Note that we need to use only the pair
contribution into the renormalization constants. They
can be found easily from the calculation of the virtual
pair corrections to the Dirac form factors of electron and
muon and used as described in Ref. [13].

I got the following result for the virtual eTe™ pair
contribution:

TVP o 2 e s
dedz To (ﬁ) [ 2(,virt )(m) + CPugg virt )(37) +

)

where

(5 (@) = fola)W(2) — 22° InzL — 22° I’z —

2
—22%Lix(1 — z) — lnw+§wlnm+

2
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2
+ 7% Inz + gln:c,
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It is worth to note that the sub-leading virtual correc-
tions don’t factorize before the Born functions fo(z) and
go(z)-

By integration over the energy fraction and the an-
gle we receive the corresponding contribution to the total
muon width:

1

1
VP a\’[ 1 5
FVP:/ / =T — ——L3 —L2 —
de | dz dc dz o\ 27 9 + 3

—1 0

265 8 20063 61 16
- (G o))+ o + e + Few] =
A —5.0497 - 10*5 To. (6)

This quantity was calculated earlier in Ref. [14] by
numerical integration using dispersion relations:
TVP([10]) ~ —5.1326 - 10 ° T, (7)
which is close but different from my number (6). The
main reason for this deviation seems to be in different
approaches to the renormalization of ultraviolet singu-
larities. Subtraction at ¢> = 0 (¢ is the momentum
transferred between the electron and muon) was used
in Ref. [14] in analogy to the case of the Dirac form
factor calculations. But in the case of muon decay, the
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subtraction of singularities should be done as described
here (see details in preprint [11]). And for non-equal
masses of the charged particles the subtraction point
doesn’t correspond to ¢> = 0. A certain (small) part of
the numerical deviation can be also due to terms pro-
portional to (a/m)?(m2/m?,)L", which were omitted in
my calculation.

The correction to the forward-backward asymmetry
of the decay can be found also:

Iyt = /dc—/dc /dmdcdm

2
a\2[1 ., 13 647 4
=T (X)) [Lreo B (8 L-
0(27r> [54 54 T (648+ T ))

10339 _ 3 19) - 24(3)] ~ —1.1676-10 ° Tg. (8)

e 2

4. Numerical Results and Conclusions. The
relative effect of the soft pair correction depends only
on the cut—off value. It is shown in Fig.1. The soft pair
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Fig.1. The relative effect of soft pair corrections versus the
cut—off value

approximation (2) is not valid for values of A close to the
threshold of real pair production and for large A ~ 1.
But it can be used there as a simple estimate. So, by
taking A = 1 we make an estimate of the order of mag-
nitude of the total contribution due to real ete™ pairs
(here the estimate is about two times the true value).
For very small values of A the correction should vanish
in any case, so the approximation is really safe there.
Let us define the relative contribution of the virtual

eTe™ pair corrections in the form
ete™ eTe™
é'VP( ) ( ) f2(,virt )(iII) + CPHgg,virt )(11})
27 fo(z) + c¢Pygo(z)

The dependence of this function on the electron energy
fraction is shown in Fig.2 in different approximations
for P, =1, ¢ = 1. The dependence on c is very weak,

(9)
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Fig.2. The relative effect of virtual pair corrections versus
electron energy fraction in different approximations

because the main part of the correction is factorized be-
fore the Born—level functions. The leading logarithmic
(LL) approximation takes into account only the terms
of the order O(a?L??), the next-to-leading logarithmic
(NLL) approximation includes also the O(a?L') terms,
and the next—to—next—to—leading approximation (NNL)
represents the complete result.

The third power of the large logarithm cancels out
in the sum of the virtual and soft pair contributions:

TSVP a 2 e e
dc dz :F0(5> [ ssv (@) £ cPugysy (@), (10)

where

ete” 4 ete™
fov (@) = 38 fol@) + £ (@),

(ete)

4 ete~
gy (@) = 3% g0(2) + giur, ().

I checked that the leading and next-to-leading terms
in these sums agree with the corresponding contribution
obtained within the fragmentation function formalism in
Refs. [6, 7].

Summing up the virtual and soft pair contributions
we simulate the experimental set—up with a certain en-
ergy threshold for registration of pairs, while events with
pair production above the threshold (with several visible
charged particles in the final state) are rejected.

If the radiation of real pairs is completely forbid-
den by kinematics (or experimental conditions), only the
virtual corrections (6) contribute. That happens, for in-
stance at large values of = > 0.99.

Thus, two contributions to the total set of radiative
corrections for the muon decay spectrum are presented.
They are required to reach the level of the theoretical
accuracy below 1-10~%. The formulae can be used for
semi—-analytical estimates and as a part of a Monte Carlo
code to describe the pair production contribution to the
decay spectrum. The formulae are valid also for pair
corrections to leptonic 7-decays.
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