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We find proximity-induced spontaneous spin and electric surface currents, at all temperatures below the
superconducting T¢, in an isotropic s-wave superconductor deposited with a thin ferromagnetic metal layer
with spin-orbit interaction. The currents are carried by Andreev surface states and generated as a joint effect
of the spin-orbit interaction and the exchange field. The background spin current arises in the thin layer due
to different local spin polarizations of electrons and holes, which have almost opposite velocities in each of
the surface states. The spontaneous surface electric current in the superconductor originates in asymmetry of
Andreev states with respect to sign reversal of the momentum component parallel to the surface. Conditions
for electric and spin currents to show up in the system, significantly differ from each other.

PACS: 74.45.+c, 74.81.—¢g

Proximity effects in superconductor-ferromagnet het-
erostructures have attracted much attention for recent
years. In contrast with the nonmagnetic case, magnetic
surfaces and interfaces make spin-flip processes possible
and suppress an s-wave superconducting order parame-
ter, generating Andreev bound states in adjacent super-
conducting regions [1-5]. Spin structure of Andreev
bound states near complex magnetic interfaces can be
rather involved [5]. Triplet components of the order pa-
rameter in a singlet superconductor can be induced by
ferromagnets under certain conditions [6]. Cooper pair
wave functions exponentially decay into the bulk of fer-
romagnets, oscillating at the same time [7], and acquire a
triplet component in the ferromagnetic region [8]. These
proximity effects can lead, in particular, to specific prop-
erties of the Josephson current through magnetic in-
terfaces, which have been intensively studied both the-
oretically and experimentally [7,9-11,1-3,12-14,4—
6]. Also, proximity-induced nonmonotonic dependence
of the superconducting critical temperature on the thick-
ness of the ferromagnetic layer has been thoroughly stud-
ied for superconductor-ferromagnetic metal bilayers or
heterostructures (see, for example, [10,11,15-18] and
references therein).

Spontaneous surface currents represent other im-
portant example of possible proximity-induced effects.
Spontaneous electric currents, taking place near sur-
faces or interfaces on the scale of the superconducting
coherence length, produce a magnetic field and, hence,
a counterflow of screening supercurrents on the scale of
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the penetration depth. The electric current can arise,
for example, near nonmagnetic surfaces and interfaces
of unconventional superconductors, whose states break
time-reversal symmetry [19, 20]. In particular, the elec-
tric current, carried by Andreev states, appears near
nonmagnetic surfaces and interfaces of chiral supercon-
ductors [21]. The current also occurs, if a surface-
induced subdominating pairing shows up near surfaces
of d-wave superconductors, breaking time-reversal sym-
metry of the superconducting state [22]. Other possible
mechanism generating electric surface currents, is specif-
ically based on a paramagnetic response of the zero-
energy Andreev surface states to an applied magnetic
field. This can take place at low temperatures at smooth
(110) surfaces of d-wave superconductors [23, 24], as well
as in a system with a thin ferromagnetic metallic layer
deposited on a semi-infinite bulk isotropic s-wave su-
perconductor [25]. In the latter case the energy of the
surface states becomes zero only for several values of
the layer thickness and, in the presence of particle-hole
asymmetry, the spontaneous electric current is accom-
panied by a spontaneous surface spin current [25]. Dis-
sipationless background spin currents, which take place
in various systems in the equilibrium and do not lead to
any spin accumulation, have been a subject of recent dis-
cussions and studies [26 —28]. The spin currents can be
generated, for example, by the spin-orbit interaction (in
particular, via Rashba term) in two-dimensional met-
als. Measurements of background persistent spin cur-
rents are not carried out for now, although some sugges-
tions for a direct detection of these currents have been
proposed in the literature [26, 29].
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In the present paper we study spontaneous currents
under conditions, when spin-orbit interaction takes place
in a thin ferromagnetic metal layer in proximity to an
isotropic s-wave superconductor. Joint effect of the spin-
orbit interaction, described by the Rashba term, and
the exchange field is shown to play an important role
in generating spontaneous currents. We find that super-
conductor induces background spin currents in the fer-
romagnetic layer with the spin-orbit interaction (FSOL)
for all temperatures below the superconducting T;.. This
spin current is carried by Andreev surface states and
takes finite values due to different local spin polariza-
tions of electrons and holes, which have almost oppo-
site velocities in each of these states. Maximal possible
values of the background spin current density are the
order of the Landau depairing current density. We find
proximity-induced finite spin currents within the qua-
siclassical approach, when only linear terms in small
parameters apy/es, h/eys are taken into account in de-
scribing the FSOL. Spontaneous background spin cur-
rents, arising in the two-dimensional electron systems
with spin-orbit interaction without any proximity effects
[27], contain higher powers of these parameters which
are assumed small below. Further, a spontaneous elec-
tric surface current, carried by Andreev surface states,
arises in the superconductor due to proximity to the
FSOL. Respective structures of wave functions and spec-
tra of the surface states are strongly influenced by the
spin-orbit interaction and the exchange field and differ
for quasiparticles with opposite momentum components
Py| parallel to the surface. The spontaneous electric
current arises as a result of this asymmetry of Andreev
states with respect to py| — —py|, to some extent anal-
ogously to the current induced by chiral surface or in-
terface states. Conditions for electric and spin currents
to show up in the system we study, significantly differ
from each other. Thus, the spontaneous spin current in
the FSOL arises even within the framework, when the
surface electric current vanishes.

Consider an isotropic s-wave superconductor at x >
> d, deposited with a layer of thickness d made of a
ferromagnetic metal. Let a macroscopic thickness of the
layer be much less than the superconducting coherence
length: d <« &;. Both the internal exchange field h
and spin-orbit Rashba term wo = a(n x p|)o enter
the Hamiltonian density of the FSOL: #H(z) = H© —
— (h(z) + w(z)) o. Here H(® describes the kinetic en-
ergy of free electrons, n is the unit vector along the sur-
face normal and p|| the momentum component parallel
to the surface. The exchange field is assumed always
aligned along the z-axis. Both h(z) and w(z) are taken
finite and spatially constant within the FSOL 0 < z < d.

The z-axis is taken directed into the depth of the super-
conductor and the system is confined by an impenetrable
wall at z = 0.

We assume A < h,apy < €f and describe the sys-
tem in question by quasiclassical Eilenberger equations
for Matsubara Green’s function:

v 0 = [(ient. + A +h5 4 w3) 5], (1)

g =-n (2)

Here g(z,ps,en) takes 4 x 4 matrix form in the four-
dimensional product space of particle-hole and spin vari-
ables. In the particle-hole space

3(D, en, ) = < g(P;Enaw) f(p,en, ) ) , 3)

f (Prens2)  G(pyen, @)

where all matrix elements are 2 x 2 matrices in spin
space. Pauli-matrices in particle-hole space are 7j,
T4+ = T, £i7y, while in spin space 6;. The superconduct-
ing order parameter matrix is A = 1/2[7, A —7_A*]ig,.
The operator for quasiparticle spin is (1/2)$7,, whereas
the operator § = 1/2[(1 + 7;)6 — (1 — 7,)6,66,] en-
ters the Zeeman term. The order parameter A is taken
spatially constant throughout the superconducting half-
space £ > d. As this follows from recent results for
two-dimensional superconductors with spin-orbit cou-
pling [30], a possibility for proximity-induced inhomoge-
neous phase of the order parameter in the plane parallel
to the interface should be studied for sufficiently thin su-
perconducting layer in proximity to the FSOL. This two-
dimensional inhomogeneous profile of the phase does not
appear, however, for a massive superconducting sample.

Electric and spin current densities can be expressed
via quasiclassical Green’s function as follows

§i=NsT(vs D Sp2d(Pyss€n))s, (4)
s NgT . n
Ji = %(Vf > " Spy5id(ps,en)) s (5)

€n

Here Ny is the normal state density of states per spin
direction, <...>gs, means averaging over quasiparti-
cle states at the Fermi surface. Spin current jj car-
ries i-th spin component along [-axis in coordinate
space. One can introduce scalar go and vector g compo-
nents of the Green’s function in spin space §(pys,en) =
= go(Ps,€n)00 + &(Ps,€n)d. As this is seen from
Egs. (4), (5), go determines electric current, while spin
current is associated with g. We should emphasize,
that (5) is an approximate equation, which is valid only
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within the quasiclassical accuracy. One can safely cal-
culate with Eq. (5) the terms in the spin current of the
order of Nyvsapys, Nyvsh, NyvyA, which can contain
also any functions of (apys/h) and/or aps/A. However,
terms with additional powers of small quasiclassical pa-
rameters (apy/ef), (A/es) and (h/ey), lie beyond the
accuracy of Eq. (5). These terms should be described
with Gor’kov equations and the exact symmetrized op-
erator for the spin current J;; = (1/2)[(p;/m)8i+eqijc.
The second term in the last expression is of the order
apy /ey with respect to the first one. For this reason it
contributes to the spin current beyond the quasiclassical
accuracy and is not taken into account in Eq. (5).

The Green’s function for the FSOL satisfies conven-
tional boundary conditions on the impenetrable wall at
z =0: §g(0,ps,en) = 9(0, Py, €n), where py and py are
the incoming and the outgoing quasiparticle momenta
respectively. We match solutions of Eilenberger equa-
tions for the superconduting half-space and for the FSOL
with the continuity conditions on a transparent interface
at * = d. Substituting the final result for the Green’s
function into Egs. (4), (5), we find no spontaneous elec-
tric current in the system and finite components Jyzo Jay
of spin current situated in the FSOL and flowing parallel
to the surface.

One can show that the whole spin current is carried
by Andreev surface states taking place in the system. We
find two dispersive branches of Andreev surface states,
whose energies depend on momentum component paral-
lel to the surface:

S -

Here
cos ® = cos? gcos % + sin? %cos ﬁ, (7)
4h+ wid (h+w)
OL=——"—, cosp=eje, er=--——(8)
|Uf7z| |h:l:w|

In the absence of spin-orbit interaction spectra of An-
dreev states, descibed by Egs. (6)—(8), reduce to the
results for spin-discriminated Andreev states at a ferro-
magnetic surface [1, 4].

Andreev surface states carry no spin current in a
singlet superconductor, since particles and holes, oc-
cupying the state, have identical spatially constant lo-
cal spin polarization and opposite velocities. However,
the wave function of Andreev surface states does not
vanish in the FSOL and has a qualitatively different
spin structure there, as compared with the supercon-
ducting region. One can extract pole-like terms from
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the whole expression for the electron retarded Green’s
function §%(z, p #,€) near bound state energies €1 2. We
determine the spin structure of electrons in the Andreev
states in terms of eigenvectors of these pole-like terms
in spin space (g) (z,ps,€). The unit vector P¢, de-
scribing electron spin polarization, can be found from
(g) (z,ps,€). Asa
result, we obtain the following spatially dependent spin
polarization for electrons in Andreev surface states (6)
atld<z<d:

the equation P¢o (g) (z,ps,€) =

e . 1 . @+ZE . @,
Pé(ps,e1,2) = Find [(e+ X e_)sin 5q S0 5~
. 67 ®+:E ®+
—(e4 x (e xe_)) sin —- (cos 5q <o T)—}—
0, . 6_ O_ . 04
+ (e_ cos — = sin —- +ey cos — - sin T)] . (9)

Local spin polarization of electrons, occupying Andreev
states, is spatially constant inside the superconductor
and takes there the same value as follows from Eq. (9)
at £ = d. Parallel and normal to the surface compo-
nents of spin polarizations, taken for incoming and out-
going electrons in one and the same Andreev state, are
related with each other as Pﬁ(f)f,al,g) = Pﬁ(pf,E]_,z),
PS (Py,e1,2) = —P¢ (Py,€1,2)- Also, since g, = —¢3, we
find from Eq. (9), that P¢(ps, —em) = —P¢(Ps,em)-
Spin polarization P* for holes, occupying Andreev
states, can be derived from Eq. (9). The quantity

P’ satisfies the equation —P"i7,5i5, (g:) (z,pf,e) =
= (g:) (z,ps,€), which contains the spin operator
for holes —(1/2)ig,6i5,. Here (g:) (x,pf,€) is the
eigenvector of the pole-like term in the Green’s func-
. +R .
tion g (z,ps,e) near &1 or 2. As this follows from
A}3 *
the general relation g (z,py,€) = 4" (z, —py, —¢€), the
eigenstates for holes and for electrons are associated
with each other as (Cﬁ':) (z,ps,€) = (g:) (z,—ps, —€).
Hence, the spin polarization for holes in the state
2" ) (®,py,€) coincides with that for electrons in the
Bn

state (—aﬁf) (z,—pys,—€). Further, as this follows
from the equation for P¢ and the relation between
P¢(ps,em) and Pe(Pys, —em), the quantity P (pys, &)
coincides with electron spin polarization in the state
(f‘[;,,) (z,pfz, —P#|,€m).- Comparing electron spin
polarizations of states (f'[;,,) (%,pfz, —Py|,€m) and

(g) (%,pfz, —P#|,€m), we find finally that spin po-
larization for holes can be found from Eq. (9) as
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Pi(ps,e1,2) = Pi(pras—Pyper2), Phpr,erp) =
= =P (P2, —Py|5€1,2)-

The first term in Eq. (9) describes P component of
the spin polarization, while the second and third terms
determine Pﬁ. Under the transformation py| — —py
one finds e; — e and O+ — O. The first two terms
in the square brackets in Eq. (9) are responsible for a
spatially dependent difference between electron and hole
local spin polarizations, taking place in Andreev states
in FSOL as the joint effect of Zeeman and spin-orbit cou-
plings. Indeed, for vanishing h or a vectors e, become
parallel to each other. Then the first and the second
terms in Eq. (9) vanish, resulting in identical spin po-
larizations of electrons and holes. Also, at £ = d this
follows from Eq. (9) P¢(py,e1,2) = P*(pys,e1,2).

Different spin polarizations and almost opposite ve-
locities of electrons and holes, occupying Andreev sur-
face states Eq. (6), result in a net spin current in the
FSOL. The local spin current density carried by two
Andreev states can be represented as Ji = jz ’”1 + jZ ’”2,
where

-8, M 1 e
Ji =3 (Vi) W [PE(Pgrem) — Pl (Psrem)] X
xng(Em))s, - (10)

Here W, = 5mANy [sin 3| is the weight of the delta-
peak in the local density of states, taken in the FSOL for
m-th Andreev state (m = 1,2), and nyg(e) is the Fermi
distribution function for quasiparticles. Substitution of
the represented results into Eq. (10) gives exactly the
spin current density, which follows from Eq. (5) and re-
spective solutions of the Eilenberger equations for the
Green’s function.

As this follows from Eq. (10) after integration over
the Fermi surface, only parallel to the surface compo-
nents j; .(z) and j7 (z) of the spin current remain
finite. The spin current j;,”, carrying along the sur-
face perpendicular to the surface spin component, van-
ishes in accordance with the relation P¢ (py,e12) =
= —P¢ (py,€1,2), since the contributions from incom-
ing and outgoing electrons, as well as holes, cancel each
other. The proximity-induced background spin current
we have found does not lead to any spin accumula-
tion. Since spin does not conserve due to the presence
of the spin-orbit coupling, the local conservation equa-
tion for the spin current contains “external” sources:
221035 /0m1 = —2N;T .. ([(h+w) X g]i)s,. One can
show that these sources, taking place for each separate
quasiparticle trajectory, cancel each other in the averag-
ing over the Fermi surface. Eventually, the proximity-
induced background spin current in the problem in ques-
tion satisfies the continuity equation ), 95 /0z; = 0.

In the limit of small Zeeman coupling h < oapy,
we find the following simple estimations for the spin
current in the thin layer with spin-orbit interaction
d < vy /(ops):

] h \? /da )
i = —Aus (—) ( pf)m. (11)

apy Uy

Here o, = y,z and o # 3, Aap > 0 is a constant the
order of unity, j.r = ns;A/pys is the Landau depairing
current density. At low temperatures j.; ~ NyvsA.

In the opposite limit A > aps, when the exchange
field in the FSOL significantly exceeds spin-orbit cou-
pling, estimations for the two components of the spin
current give different results:

5 aps\ (dhY .

Jyz - Byz ( h ) (vf) JCL) (12)
s apy\3 (dh) .
Jzy = =By ( h ) (vf JeL - (13)

Here B,,, B,, are constants of the order of unity. For
h ~ apsy ~ vs/d spontaneous spin current densities
reach the maximal value of the order of j.r.

Background spin current density, arising without
any proximity effects in the two-dimensional metal
with Rashba spin-orbit interaction [27], takes the form
(aps/es)® €4 Nvg /6. Tt is of the third-order in parame-
ter apy/ey, which is presumably a small quasiclassical
parameter. These spin currents are carried by all the oc-
cupied states at a given temperature [27, 28], in contrast
with the currents induced by a proximity to the super-
conductor. For this reason respective reference quantity
€7Nyvys contains a large parameter €7/A as compared
with j.r. The quantity j.r, characterizing spontaneous
spin current densities calculated above, exceeds the re-
sult [27] under the condition A > ap;y (apy/ef)?.

We return now to the problem of spontaneous sur-
face electric current. Each separate Andreev surface
state, taken for given p), carries finite surface electric
current. There is no net electric current under the con-
ditions considered above, since electric currents carried
by Andreev surface states Eq. (6)—(8) with pj and —p|
cancel each other. This is associated with the symme-
try of scalar component gy of the quasiclassical Green’s
function with respect to the sign reversal of the momen-
tum parallel to the surface. Spin current takes finite
values since vector component g of the Green’s function
does not possess the symmetry. However, the symmetry
of go turns out to be approximate, taking place only un-
der the conditions apys, h < e¢, within the quasiclassical
approximation applied to the FSOL. For this reason we
find below finite spontaneous surface electric current,
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assuming A < apy,h < e and applying the S-matrix
approach for describing the FSOL. Then the Eilenberger
equations should be solved only for the superconducting
region, whereas effects of the FSOL are taken into ac-
count via respective boundary conditions.

A surface with the FSOL is characterized by the
normal-state scattering S-matrix, contained reflection
amplitudes for quasiparticles. The S-matrix can be

represented as S = S(1 + 7,)/2 + S(1 - 7,)/2, where
S(ps) = 5" (~py)) and

2 Trr Ty 1[ h+w
S = = |rm+r +(ry—7) ol.

(Tu m) 2 b+ wl
(14)

Here vy, = e’®1.4 and, assuming spatially constant h
and a in the FSOL,

©4,, = ™+ 2arctan [M tan(pfm,i,d)] —2|psa|d,

Pfer,y (15)
15

where Fermi momenta in the normal metal p; and in the
FSOL pyt,, satisfy the relation p,, | = p%, £ 2m|h +
+w(pg)l- )

Making use of explicit expression for the S-matrix
(14) and following the quasiclassical approach with Ric-
cati amplitudes in describing the superconductor [31, 1],
we obtain the quasiclassical Green’s function. In partic-
ular, we obtain spectra of Andreev surface states, which
take the following form now

XFe XF®
€1,2 = sgn [sin < ;: )] A cos (%) . (16)

Here X (ps)) = 3(01(pys)) + ©4(ps)) — O+(=py)) —
— ©,(—py|)) and ®(py) is defind in Eq. (7), where
one should use the generalized definition for @ (py):
O+(ps)) = O1(£Ps)) — O, (£Py))- For a small parame-
ter |h+w|/e; < 1 the quantity X (py|) vanishes in the
first approximation, while the definition for ©. reduces
to that given in Eq. (8).

In general, energies ¢1,5(py|) in Eq. (16) are situ-
ated asymmetrically with respect to the Fermi level for
a given py|. Since X(py|) and ®(py) are odd and
even functions of py| respectively, each energy branch
€1,2(Py|) in Eq. (16), as well as the Andreev spectra as a
whole, is neither odd nor even with respect to the trans-
formation Py = — Py’ 61,2(—pf”) = —62’1(pf||). As a
result of the asymmetry, the spontaneous electric current
density j,(z), flowing along the surface perpendicular to
the exchange field in the superconducting region, arises
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near the surface with the FSOL. The spontaneous sur-
face current density at the interface x = d takes com-
paratively simple form in the case of small spin-orbit
coupling apy < (e % h):

jy(d) =

_ meNgA v A sin? O cosh 2 Acos©o
T2 fv\or 2 2T

(0N A cos O
_COSTtanh T) X(pf||)>sf . (1
Here Oy, taken for zero spin-orbit coupling, is defined
as Og = O |a=0 = O_|a=0. The expression for X (py)
in Eq. (17) should be taken linear in small parameters
apy/(e;+h). Then X (py|) < w, = apy, and averaging
over the Fermi surface in Eq. (17) gives nonzero result
for j,, while j, vanishes.

We notice, that an expression for the Josephson
critical current in S-F-S junctions with small momen-
tum dependent transparencies D(pys) [3, 4] can be
obtained from Eq. (17) by replacing X(pyj)vsy, —
— —2D(py|)|vse|- This is not surprising, since both
the spontaneous surface current and the Josephson cur-
rent are actually the two components of total supercur-
rent carried by the same Andreev interface states, which
reduce to surface states in the tunneling limit. In the
particular case h ~ apy < e the spontaneous surface
electric current j, o< apgh/e% is of the second order
in a small parameter (h/ef) ~ (aps/es). Since these
small second-order terms are disregarded within the qua-
siclassical approach to describing the FSOL, solutions of
Eq. (1) found above show no spontaneous electric sur-
face current, in contrast with the spin currents in the
FSOL.
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