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The interaction between tunneling system inherent in amorphous solids is established to be responsible
for the univerasl behavior of their kinetics and thermodynamics properties at low temperature. In the paper
we describe the relaxation mechanism induced by the intercation which falls down as R™2 at large distance.
This interaction is either the electrostatic dipole - dipole one or is the elastic one between the point defects
(tunneling system). In the last case, the intercation is due to indirect interaction induced by acoustic virtual
phonon exchange. The relaxation gets significant at sufficiently low temperature when phonons are substan-
tially frozen out. We show that in the realistic experimental situation the measuring field strongly accelerates
the interaction stimulated relaxation. The characteristic temperature and field dependences of the relaxation
rate are found when the rate is affected both by the interaction between tunneling systems and by the external

field.
PACS: 61.43.Fs, 75.50.Lk, 77.22.Ch

1. Introduction

For along time the standard model of non-interacting
two-level-systems (TLS) [1] has served as a good back-
ground for understanding experimental data in glasses
at low temperatures T' < 1 K. The further investigations
revealed that below 100 mK almost all measurements in
dielectric glasses dealing with their relaxation proper-
ties [2—6] cannot be treated ignoring the TLS interac-
tion. For this reason one can suppose that that below
100mK TLS manifest the collective behavior induced by
the interaction between them.

It is well established that in amorphous solids TLS
are coupled with phonons. In dielectric glasses at
T <« Op (Op is the Debye temperature) coupling
with acoustic phonons plays a main role. The virtual
exchange of TLS by acoustic phonons results in the
indirect interaction between TLS, which decays with
the distance R as R~3. In particular, this interaction
gives rise to the flip-flop transitions between two TLS
(see Fig.1). The transition amplitude also decays with
the distance as R~3 [7, 8). In a number of dielectric
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glasses, TLS possess their own dipole moment. In this
case the electrostatic dipole-dipole interaction can be-
come the dominating interaction between TLS [9]. This
interaction also decreases with the distance as R™3.
It was experimentally discovered by Arnold and Hun-
klinger [10] ( see also [9]) that the 1/R? interaction
contributes to the spectral diffusion of the TLS en-
ergy. This spectral diffusion involves the dynamic fluc-
tuation of the TLS energy due to its interaction with
neighboring TLS, making transitions between their lev-
els [11].

Along with the interaction significance for the
acoustic [10, 9] and optical [12—14] hole burning exper-
iments, it also affects the decay of coherent echoes [15].
Also the interaction between TLS has been revealed
in the non-equilibrium dielectric measurements [5, 16],
giving rise to the reduction of the spectral density
near zero energy. This is interpreted as the dipole gap
formation [17]. In addition, it has been found that
the transition from coherent to incoherent tunneling
takes place if the typical interaction energy exceeds
tunneling splitting [18]. Recently discovered anomalous
low-temperature behavior of amorphous solids in the
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A. Nonresonant pair

WY

B. Resonant pair

Fig.1. Energy transport between excited TLS (left) and
nonexcited TLS (right). It is not efficient in the off-
resonant case (A), where the enrgy level mismatch ex-
ceeds the resonant interval indicated by figure bracket. For
the resonant pair (B) the intercation of TLS induces flip-
flop transitions mixing up two possible quasi-dehenerated

states, where either first or secon TLS is excited, while the
remaining TLS is in its ground state

external magnetic field [19—-24] can also be associated
with the TLS interaction.

The relaxation in a disordered system can be due to
delocalized excitations. The single particle energy delo-
calization is not efficient for the ensemble of interacting
TLS because the static energy disordering is very strong
there. Therefore, the Anderson localization [25] of all ex-
citations takes place. In other words, the localization in
the disordered TLS system is due to a large energy level
mismatch for a typical pair of TLS (Fig.1A) compared
with the flip-flop transition amplitude for this pair. Sup-
pose that a TLS excitation energy can experience large
time-dependent fluctuations. These fluctuations can re-
duce the energy mismatch value, stimulating level cross-
ing and supporting flip-flop transitions (see the resonant
pair in Fig.1B). Such fluctuations can be induced by ei-
ther the external alternating (measuring) field or they
can be due to the spectral diffusion, caused by tran-
sitions of neighboring TLS. Thus, such fluctuations can
promote the delocalization in the system. In the absence
of the external field this delocalization can be treated as
a self-consistent process in which the spectral diffusion
induces TLS transitions. In its turn, TLS transitions
cause the spectral diffusion due to TLS interaction.

This paper is a comprehensive presentation of our
results concerning the effect of R~2 interaction on the

dynamic properties of amorphous solids. It is organized
as follows. In Sect.2 we address the single particle local-
ization problem for zero temperature and zero external
alternating field. In Sect.3 the effect of an external alter-
nating field on the single particle localization is studied.
We demonstrate that the field having a sufficiently large
amplitude and a small frequency can break the Anderson
localization. In Sect.4 we study the finite temperature
many-body delocalization of a TLS energy within the
TLS ensemble induced by the self- consistent dynamics
of resonant pairs (see Fig.1B). Sect.5 is devoted to the
most complicated, but experimentally relevant regime
where both external field and interaction of TLS must
be taken into account simultaneously. In Summary we
present the brief discussion of the application of our the-
ory to the experimental studies.

2. Anderson localization of the TLS energy.
The relaxation of TLS is mainly due to resonant TLS
for which bias asymmetries A and tunneling amplitudes
Ag are of the same order of magnitude. The energy
E=(A%+ Ag)l/ ? is supposed to be uniformly distrib-
uted within a wide energy interval, with P being the
distribution constant. The pseudospin 1/2 Hamiltonian
of the interacting resonant TLS reads [8, 26, 27]

H=-) ES;-) U;S'S?, U(Ry) = R% (1)
. ij ij
U;; is the coupling amplitude, and the amplitude con-
stant (U) = 0. The phononless relaxation induced by
the interaction is due to TLS pair obeying the resonant
condition

|E—E’ |< U(Ri]’). (2)

Hereafter such a TLS pair is referred to as a resonant
pair (RP).

The Anderson delocalization and/or localization are
explicitly associated with a TLS capability to form res-
onant pairs. If the typical TLS has on average the large
number of resonant neighbors, one would expect the de-
localization. In fact, each resonance shares the energy
between two TLS. One can use a percolation analogy,
connecting all resonant pairs into a cluster. When the
infinite cluster can be formed, excitations become delo-
calized (cf. Ref.[28]). The average number Ny of TLS,
forming a resonant pair with a certain given TLS reads

L
No =~ xIn (E) ,X = 4w PU. (3)

L is the size of the whole system and a is the minimum
distance between two TLS. Since in all glasses the pa-
rameter x < PU is very small (see e.g. [29, 30])

X = 47PU <102 — 102, (4)
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the number of resonant neighbors is much less than unity
for any reasonable sample size L. Therefore, only a small
fraction of two level systems belongs to resonant pairs,
while majority of the others are immobile. This proves
the full Anderson localization of all excitations in this
system.

3. Delocalization of Floquet states. Consider
the effect of an external alternating field on the Ander-
son localization within the TLS ensemble at zero tem-
peratures. An approximate zero temperature condition
means that one can neglect the interaction between ex-
cited TLS because their total number is negligibly small
in this case. In particular, there is no spectral diffusion.
Due to the field, the energy E; acquires the oscillating
part a; cos(wt). We assume that the field varies suffi-
ciently slow and the amplitude a; is small compared to
the typical scale of the excitation energy

w<Ka; L E;. (5)

Let b; be the amplitude of the excited TLS state
(pseudospin projection up) at the site i. An evolution
of a single-particle excitation can be described by the
Schrédinger equation with the external field involved

ib; = (E; — a; cos (wt)) b; + Z Uijb;. (6)
J

Equation (6) can be rewritten in terms of the Floquet
state amplitude d;;, [31]

Ed'in = (Ez - nw) dzn + ZTiﬂ;dejP’
jp
. (7)
Tinsjp = Usijdp—n ( . ” z)

with € being an eigenvalue of a Floquet eigenstate quasi-
energy. Here J,(2) is the Bessel function of order p.

If the hopping term Tj,;, is neglected, the eigen-
states of the system in the external field correspond
to localized single-site excitations of a TLS coherently
dressed by n “quanta” of the frequency w, named
dressed excitation. The resonant condition for this ex-

citations, similar to (2), reads
@i — as
oo (122)
w

This criterion is similar to multiphoton resonances in
the nonlinear optics.

Let us denote the average of a site-fluctuating differ-
ence |a; — aj| by a. The argument of the Bessel function
in Eq. (7) is a large parameter of order of a/w > 1 (see
Eq. (5)). If |n| > a/w, the magnitude of the correspond-
ing Bessel function is exponentially small, entailing a

|E; —nw — Ej| < [Tio;jn| =

, (8)
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negligible probability of resonant coupling. The oppo-
site condition @ >| n | w means that, in order to have
resonant coupling, the energy difference should be at
least less than the field amplitude a:

[n|<a/w— |E;—Ej| <a. 9)

On the classical language this condition means that the
interaction of TLS can be efficient only when the exter-
nal field stimulates their real level crossing.

Under condition (9) and a/w > 1 the Bessel function
in (7) can be approximately replaced by its asymptotic
value. Omitting the standard oscillating prefactor which
plays no role in a random discrete problem, one can
estimate the coupling amplitude for dressed excitations

(DE) Eq. (7) as
U Jw
|Ti0;5n| = R—zgj\/ pop (10)

Consider the delocalization of an excitation due to
the alternating field within the framework of the concept
of resonant coupling. Two sites ¢ and j are in the res-
onance when the condition Eq. (8) is satisfied at least
for some n < a/w (see Eq. (9) and Fig.2). Since the
energy splitting between two subsequent levels is equal

A. No external field

B —
e; i
— @

B. With external field n=2
n=1
() n=0

n=-1

n=-2

Fig.2. The formation of resonant pair from the initially
non-resonant one (A) in the external alternating field. The
coherent excitation dressing (B) enables transitions with
the energy change given by the integer number n of field
frequencies. The case n = —2 satisfies the resonance con-
ditions (see Eq. (8))

to the field frequency w, the resonance always occurs if
the hopping amplitude Tjo;j, exceeds w and condition
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(9) is fulfilled. As directly follows from Eq. (10 ), this
happens when sites ¢ and j are separated by a sufficiently
small distance R;;

Rij <Py = (U/\/@) 1/3 . (11)
Thus all TLS j located closer than the crossover distance
7« to TLS ¢ under consideration with |E; — E;| < a are
resonantly coupled with each other. Taking into account
that the number of such centers in a unit volume is equal
to Pa, we find that the total number of the resonant
neighbors within the sphere of a radius 7. is given by

W (rs) = %x\/g. (12)

At larger distances R > 7, the total number of reso-
nances in each layer 7, <7y < R <7y

2 U |wa Ty

~ 3 ey —_— = —

W (7'1,7"2)~P[1 dR(R3 aw) X*lnrl,
X« = 47PU | S (13)

increases by the factor v/a/w as compared to the zero
field case (3).

According to the Levitov’s analysis of the delocal-
ization problem in the case of the 1/R? energy hopping
amplitude [32], the parameter x, is a decisive parame-
ter for the delocalization. As follows from Egs. (12) and
(13), when x. < 1 the first resonance occurs at the
distance R, ~ ryel/X= > r,. Thus, the first hop of
the excitation occurs to the distance R,, taking some
time ¢; determined by the inverse hopping amplitude
t; ~ R,/U oc €/x=. Then, the time required for the
second hop, when the next resonance appears, is expo-
nentially large compared with ¢; [32]. Therefore, the
delocalization is exponentially slow, if any.

In the opposite case x. > 1, the number of reso-
nances exceeds unity in each spherical layer r; < R <
< 2r; (ry > ry) and the resonant sites form an infinite
cluster meaning an existence of the delocalized state [8].

The inverse time of a single hop between two near-
est resonant neighbors in the delocalization regime can
be treated as a relaxation rate for the DE located at a
certain site. The distance R, < r. between these neigh-
bors can be estimated from the relation W(R,) ~ 1 (see
Eq. (12)). This radius is determined as

R, ~ (Pa)~'/3 (14)

and the typical hopping amplitude corresponding to the
distance R, estimates the inverse lifetime (the relaxation
rate) for the DE

'~ T (R,) = %\/w/a — (@)?y.  (15)

4. Many body delocalization, dephasing and
relaxation. Here we will discuss the case of the zero
field and a finite temperature 7" > 0. The Anderson lo-
calization of excitations proved in Sect. 2 takes place
only if every resonant pair RP can be treated indepen-
dently. This assumption is valid provided that one can
neglect the interaction between different excited TLS.
We will see that this is not the case at any finite tem-
perature T' > 0. Below we will show that at any finite
temperature the long-range 1/R? interaction of excited
TLS leads to the irreversible dynamics and relaxation.
This relaxation is essentially of a many-body origin. In
other words, one should take into account simultaneous
transitions in two or more RP (see Fig.3) and thus at
least four TLS will participate in an elementary process
[8, 27, 33, 34].

A. Initial state

B. Possible final state

LI

—_— +
+ —_— ‘
C. Forbidden final state
_._ +
—o— e

Fig.3. The interaction of resonant pairs leads to the many-
body delocalization (A) The excitation is transferred due
to the simulteneous flip-flop transitions of four TLS to their
new states (B). The transitions involving two TLS belong-
ing to different resonant pairs (C) are not allowed because
of the energy mismatch

Any RP has four energy levels. Two of them cor-
respond to the flip-flop configuration mentioned above
(see Fig.2B). The two other states of a pair correspond
to the configuration where both TLS are either in their
excited or their ground states. In fact, the typical energy
of excited TLS in a resonant pair is given by the ther-
mal energy 7', while their flip-flop transition amplitude
Vij is generally much smaller due to the weakness of the
interaction Eq. (3). Therefore the flip-flop interaction
Agp can connect only pairs of TLS, where one of them
is in its excited state and the other one is in its ground
state (Fig. 2). The other two states are separated from
the flip-flop pair by the large energy gap of order of the
temperature.
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The states of the flip-flop configuration are separated
by the energy interval A, =| E — E' |. In spite of
the fact that E, E' ~ T, one can construct RP with
Ap,Agp < T. Then, even if the interaction V(R) be-
tween these TLS is weak, the condition A, < Ag, can be
valid. Therefore the two levels in the resonant pair can
be strongly coupled (see Eq. (2)). In the remainder of
this paper we will consider only flip-flop configurations
of RP. We will treat RP as a new kind of the two-level
system with the energy asymmetry A, =| E — E' | and
the tunneling amplitude Ag,(R).

Thus below we investigate the relaxation of this novel
RP type of the two-level system for which the distrib-
ution function of parameters A, and Ag, is defined as
[8, 30]

P(2)(AP’A0P) =
T S0l0)
R3 EE' "

= (0(Ap— | E = E' )6(Aop — (16)
The brackets denote two averaging, namely, thermal av-
eraging and averaging over the distribution of parame-
ters of original TLS. In addition, the integration over the
distance R is implied. Evaluation of the pair distribu-
tion function Eq. (16) within the logarithmic accuracy
[8, 33] reads

PO (Ap, Agy) m (PT)(PU)/Aj,. (17)

Remember that resonant pairs are only those pairs
for which A, < Ag,. Therefore each resonant pair has
the single characteristic energy given by its flip-flop am-
plitude Agp. Since resonant pairs are mainly formed
by TLS with A ~ Ag ~ T, the characteristic pair
transition amplitude can be estimated as U/R?, where
R ~ (U/Agp)'/? is the size of the pair.

Resonant pairs interact with each other. We will
show following Refs. [8, 33] that this interaction in-
evitably leads to the energy delocalization induced by
collective flip-flop transitions similar to that shown in
Fig.3. It is convenient to separate the whole sequence of
resonant pairs into the infinite set of strips k = 1,2, 3, ...
These strips are defined in the space of characteristic
energies of resonant pair. FEach strip k& is formed by
resonant pairs having transition amplitudes within the
range (Aop(k)/2, Aop(k)), with Ag,(k) = T/2%. One
can estimate the concentration of RP N}, within the strip
k making use of the distribution function Eq. (17)

Ny, ~ (PT)(PU) = N,. (18)

It is important that the RP concentration in each
strip k is completely independent of the value Agp(k).
Mucema B MIAT® Tom 80
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Separating strips corresponding to all permissible val-
ues Agp, one can cover completely the whole ensemble
of resonant pairs. Within any strip the RP concentra-
tion is constant N, Eq. (18). Therefore the average
distance between RP within any strip does not depend

on the kind of it. This distance is equal to R, ~ N, %.
Since the interaction between RP is of the same origin
as the interaction between TLS, it is given by the same
expression U/R2. Therefore, the typical energy of the
interaction between RP within any strip is given by

U. ~U/R3 =~ Tx>. (19)

Since RP is a kind of TLS, one can introduce a con-
cept of a flip-flop configuration for two RP shown in Fig.
3 and derive an expression for the transition amplitude
A((;l) between the levels of this configuration. Because
interacting pairs are both resonant this transition ampli-
tude is given by their characteristic interaction Eq. (19).
Consider the effect of this flip-flop interaction on RP
belonging to different strips.

The strips with the energy smaller than U, satisfy
the conditions of the Anderson delocalization because
the characteristic flip-flop transition amplitude U, be-
tween RP is greater or equal to their energy disorder-
ing, determined by their characteristic energy Agg. The
elementary process of an energy hop between pairs is
demonstrated in Fig.3. It is important that in order
to transfer the energy, the simultaneous transition of all
four TLS is required, while the transition of two TLS be-
longing to different resonant pairs (Fig.3C) is forbidden
because of the energy mismatch of order of the thermal
energy T'. Thus RP excitations in the cluster formed by
the strip with the energy U, are delocalized. The relax-
ation rate of excitations within this strip is given by the
inverse characteristic interaction

. ~ T(PU)>. (20)

T*_1~

5t m U(R,) ~ Tx . (21)

This dephasing rate decreases linearly with the temper-
ature. Compared with the phonon-induced channel pro-
viding a T? -dependence (see Ref. [11]), the dephasing
governed by the mechanism concerned predominates at
sufficiently low temperatures.

Regardless of the relaxation mechanism, the spectral
diffusion rate is defined as [9, 11]

<‘E‘> ~ Ty 2 (22)

On the other hand, in a system with the 1/R3 interaction
this rate can be expressed as the ratio of the spectral dif-
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fusion amplitude x7T' and thermal TLS relaxation time
T1 [9, 11]

7'2_2 =xT/m. (23)

Using (21) and (23) one can estimate the relaxation rate
for thermal TLS as [8]

' =x3T. (24)

5. Relaxation at finite temperature and strong
field. Previously, we have shown that the 1/R? interac-
tion of excitations and the external alternating field can
independently result in the delocalization and in the irre-
versible TLS dynamics in the regime of arbitrary strong
disordering. Under conditions of the real experiment
both the TLS interaction and the external alternating
(measuring) field are significant. Below we consider the
combined contribution of two those effects on the TLS
relaxation.

Our analysis starts with the very low frequency of
the external field, where the field can be treated as sta-
tic. Then the frequency will substantially increase to
its maximum value w ~ T'. The case of larger frequen-
cies w > T is beyond the scope of this paper because of
almost unavoidable heating. The results of our consid-
eration are placed into the Table.

Frequency-dependent relaxation rate

-1 -1

Frequency range Ty T,

O<w< (Tx2)2 /a Tx3 Tx?

(sz)2 Ja<w<ax? | (aw)?x (awT2)1/4 X
ax? <w < Tx ax? (aT)'/? x3/?
Tx<w<a (a/w)Tx3 | (a/w)/? Tx?
a<w<Tora<Tx | Tx? Tx?

Below we consider the case of a relatively large field
amplitude a > Tx where the field effect is significant.
Such a regime has been realised in metallic glasses
[35] where the nonlinear behavior has been revealed.
The condition ¢ > Tx means that the fluctuation of
a TLS energy induced by the external field exceeds the
interaction-induced fluctuation. We also assume that the
field amplitude is less than the thermal energy to avoid
heating. Thus in our consideration below the field am-
plitude a satisfies the inequality

Tx<a<T. (25)

5.1. Quasistatic field. When the frequency of the
external field w is very small, the field is almost static
and we can ignore it. Then the relaxation and dephasing
rates are defined by the zero field limit Egs. (21), (24),

respectively. In this regime the fluctuations of a TLS
energy are due to the self-consistent spectral diffusion
alone. The spectral diffusion rate is given by Eq. (22).
The rate of a TLS energy fluctuation induced by the ex-
ternal field is aw. The external field can be treated as
static until the spectral diffusion rate exceeds the fluctu-
ation rate due to the field 7, 2 > aw, which takes place
at w < (TXZ)2 /a (see the first row in the Table).

5.2. Adiabatic relaxation induced by slow field. At
larger frequency

> (Tx?)?/a (26)

the field cannot be ignored. It can stimulate transitions
of TLS and irreversible relaxation due to energy level
crossings of different TLS. At a large field amplitude
Eq. (25) crossing between two TLS energy levels Ey and
E; ( Eo — E; — acoswt = 0) [36] is possible provided
that

|Eo — Ej| < a. (27)

The average distance between two TLS satisfying
Eq. (27) is given by R, ~ (Pa)71/3.

Consider a flip-flop pair of TLS with the close en-
ergies satisfying Eq. (27) and separated by the distance
R;. This pair undergoes level crossing during the field
oscillation period w!. If the pair transition amplitude
is large V2 = (U/R]??)2 > E ~ aw, the adiabatic relax-
ation takes place. Then according to the Landau—Zener
theory the excitation will transfer within a TLS pair with
the almost unity probability if the size R; of a pair is
sufficiently small (see Eq. (11))

R; < 7.~ (U/vaw)"">. (28)

The adiabatic regime takes place when each thermal
TLS has the large number of adiabatic neighbors, sat-
isfying Eqgs. (27), (28). This requires r. > R,, which
leads to the frequency constraint from top (see Table,
the second row)

w < ax’® (29)

For given thermal TLS the relaxation rate 7, * can be es-
timated as a frequency of adiabatic level crossings given
by the product of the field oscillation frequency w and
the number of adiabatic level crossing events during the
single field oscillation. The latter number is given by the
number of adiabatic neighbors x., satisfying Eq. (27)
and located within the sphere of the radius r, around
given TLS, x. ~ Par: = (a/(.u)l/2 x>1

T~ xaw = (aw)l/2 X- (30)
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It is interesting that the relaxation rate (30) coincides
with that of Eq. (15).

In the adiabatic regime we can estimate the dephas-
ing rate using Egs. (23), (30)

7'2_1 = (TX/T1)1/2 = (asz)l/4 X- (31)

It is important that dephasing (31) is so fast that the
phase coherency between the periodic events of level
crossings occurring during the period w™! can be ig-
nored. This is true in the whole adiabatic frequency
domain (the second row of the Table) because the de-
phasing time is in fact less than the oscillation period
(see Egs. (25), (29), (31))

wr2 = W/(@x*)**(@/T)/*X? <1 (32)

5.3. Non-adiabatic regime at intermediate frequen-
cies. Consider the nonadiabatic regime, which takes
place at higher frequencies

w > ax>. (33)

This condition is opposite to Eq. (29). In this regime
the vast majority of thermal TLS undergo nonadiabatic
level crossings (see Eq. (34) below).

In the adiabatic case we have dealt with the regime
wTs < 1 (see Eq. (32)). In the nonadiabatic regime char-
acterized by Eq. (33) one should distinguish between
two cases wm < 1 and wme > 1 where the phase mem-
ory between two subsequent level crossings either exists
or does not exist, respectively.

Consider the first case wm < 1 valid at the border of
adiabatic and non-adiabatic domains w = ax? (see the
Table). Here dephasing is fast and phase correlations
between periodic level crossings can be ignored. Most
efficient flip-flop transitions occur between thermal TLS
separated by the average distance R, Eq. (14). In fact
this distance is the characteristic separation of neighbor-
ing two-level systems with energy difference less than
the field amplitude a, required for level crossing. On
the other hand at larger distances a nonadiabatic transi-
tion probability decreases with the distance very fast as
V2 ~ R™5. Therefore the most efficient energy transfer
should occur between nearest neighbors. The relevant
transition amplitude reads V, = U/R3 ~ ax. In the
large frequency case Eq. (33) one has

V2 < E=aw (34)

and transitions are nonadiabatic. According to the
Landau—Zener theory, their probability per one energy
level crossing, occurring a few times for the period w1,
is W, ~ V2/(aw) = (a/w) x®. This probability defines

IIucema B MITP® Tom 80 BHIM.7-8 2004

the TLS relaxation rate as the inverse average time be-
tween two successful transitions

= Waw ~ ax?’ (35)
Then, using Eq. (23), one finds
75 = al/2T/23/2 (36)

The above derivation remains valid until breaking the
condition Eq. (32) at

w > al/2TV/2x3/2, (37)

In the opposite case of wrs > 1, the field periodicity
is significant so that the formalism of DE introduced in
Sect. 3 (see also Ref. [31]) becomes applicable.

The further analysis depends on the relationship be-
tween DE energy splitting w and the spectral diffusion
amplitude Tx (see Eq. (25)). We start with the case of
lower frequencies (see the Table)

w < Tx. (38)

where all pairs of TLS with an energy difference less than
the field amplitude a inevitably undergo DE level cross-
ing during the spectral diffusion quasi-period 71. These
crossing levels are coupled by the transition amplitude
of dressed excitations Eq. (10).

In the regime of Eqs. (37), (38) the relaxation is
induced by non-adiabatic level crossing caused by the
spectral diffusion. On the other hand, the spectral dif-
fusion is caused by the relaxation dynamics of TLS, so
the process is self-consistent [8, 27, 33, 34].

Assume that there is an existing characteristic relax-
ation rate of thermal TLS 7, '. Transitions of thermal
TLS change other TLS energies giving rise to the spec-
tral diffusion. The spectral diffusion leads to level cross-
ing of DE, stimulating irreversible transitions with the
output rate r,,:. The self-consistent relaxation mech-
anism requires the input rate 7; ! to be equal to this
output rate.

The rate of transitions induced by the spectral dif-
fusion can be estimated as the number of transitions
induced by level crossings during the quasi-period of the
spectral diffusion 73 multiplied by the frequency of spec-
tral diffusion cycles 7, !, Energy level crossing for two
DE happens when (cf. Eq. (8), Fig.2)

E]_ — E2 = nw (39)

(where n is an integer number). The total number of
such crossings due to the spectral diffusion induced en-
ergy fluctuation Ty for the time 7 is given by

N, = (Tx/w). (40)
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Multiple crossings for the same TLS pair give a logarith-
mic correction to Eq. (40) and can be neglected in the
qualitative scaling approximation [8, 33, 34]. This is due
to the specific behavior of the spectral diffusion induced
by the 1/R? interaction. For this spectral diffusion the
characteristic energy fluctuation is directly proportional
to the time [9, 11]. Therefore this is the anomalous dif-
fusion process compared to the normal diffusive ¢1/2 be-
havior of the displacement. For this super- diffusion
case the probability of energy to return back to its ini-
tial value is not so large as in the case of the normal
diffusion.

We consider nonadiabatic flip-flop transitions be-
tween only neighboring thermal DE separated by the
distance R, (see Eq. (14)), because the nonadiabatic
transition probability to larger distances drops with the
distance very fast (R~%). The probability of the nonadi-
abatic transition during one level crossing for such a pair
of thermal DE induced by the spectral diffusion with the
rate <| & |>~ 7, 2 can be estimated using the Landau-
Zener theory in the nonadiabatic limit. The transition
probability can be found using the transition amplitude
Eq. (10) for R = R,

W, = (Varz)® < 1. (41)
The relaxation rate is expressed as
7 =Tout = Ny, Wi/ ~ ax’. (42)

One can show that if we take the input relaxation rate
slower than Eq. (42), the output rate will be faster than
the input one, and, if we take the input rate larger than
Eq. (42) the output rate will be smaller than the input
rate. Therefore the solution (42) is stable and the only
possible. Thus, the nonadiabatic single particle relax-
ation described by Eqs. (35), (36) takes place within
the whole frequency domain ax? < w < Tx (Table, the
third row).

5.4. High frequencies. When the external field fre-
quency w exceeds the scale T'x, the spectral diffusion
does not necessarily lead to DE energy level crossing
for closely located pairs, considered in Sect. 5.3. The
single-particle delocalization in this case does not occur
similarly to the case studied in Sect. 2 because the field
frequency is large compared to that needed for the de-
localization (see the Table, line 2). On the other hand,
there exists a finite concentration of excited DE (excited
TLS dressed by some certain number of the external field
quanta, see Fig. 2) and many-body relaxation should be
similar to that described in Sect. 4.

Following the approach of Sect. 4 one can introduce
the concept of the resonant pair of DE, instead of RP

(resonant pairs of TLS ). A resonant pair of DE (RPDE)
is defined as a pair of DE separated by the distance R;,
with sublevel energies F; and FE,, which obeys the res-
onant condition for some integer n < a/w (see Fig.2)

Here the transition amplitude T (R) ~ (U/R3)y/w/a is
taken from Eq. (10). Like a resonant pair, one can treat
RPDE as a new kind of two-level system. The para-
meter Ay, is the asymmetry energy for RPDE. Then,
strictly following the derivation between Eq. (16) and
Eq. (18) one can estimate the concentration of RPDE
for any given value of transition amplitude 7' (R). This
concentration is given by the expression

N* m T2 /2. (44)
w

The concentration N* is independent of the given para-
meter T'(R) just like the concentration of RP N, defined
by Eq. (18) does not depend on the parameter Ag,. The
appearance of the factor 1/a/w in Eq. (44) in compar-
ison with Eq. (18) can be understood as follows. The
concentration N* compared with N, acquires the fac-
tor n. = a/w since resonance condition (43) should be
valid for at least one integer |n| < n. so that the number
of possible distinguishable resonances for the single pair
multiplies the resonance probability by the factor n..
On the other hand, the resonance probability decreases
by the factor 1/,/n, proportionally to the reduction in
the transition amplitude Eq. (10). The overall effect is
just the increase in the density of resonant pairs by the
factor y/a/w (cf. Eq. (13)). Accordingly, the interac-
tion between these resonant DE pairs enhances by the
same factor and the new dephasing rate is given by this
universal interaction

1/7 = Tx*(a/w)'/?. (45)

Making use of Eq. (23) one can estimate the relaxation
rate as

nl= (Txr?) " = (a/w)TXC. (46)

When the frequency exceeds the amplitude a < w <
< T, excitation dressing becomes negligibly small and
we return to the linear regime (the last row of the Table).
The regime when the frequency exceeds the temperature
is realized in several echo measurements [2]. This regime
can lead to heating and requires a special study.

6. Summary. We have described the self-relaxation
rate of TLS at different temperatures, external field am-
plitudes, and frequencies. We found that the relaxation
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rate is either temperature independent (see the Table), or
decreases with the temperature as 7. The phonon stim-
ulated relaxation 77 * oc T2 (see Ref. [9]) is much slower
in the low temperature limit and the self-relaxation de-
scribed above should dominate when 7' — 0.

The suggested theory predicts the parametric depen-
dences of relaxation rates in various regimes. In contrast
to the theory for the phonon-stimulated relaxation (see
the review of Hunklinger and Raychaudchary [9] and ref-
erences therein) we are not able to determine the numer-
ical coefficients for each rate process shown in the Table.
This missed factor can be of order of unity, but it can
also be much greater or much smaller than unity, like
0.01 or 102. The example of the latter situation is given
by the tunneling rate involving two-phonon processes,
examined by Kagan and Maksimov [37] for the quan-
tum diffusion problem, where they found the large nu-
merical prefactor of 1000 due to the large factorial factor
involved.

We do also expect large numerical prefactors for our
expressions. There are several reasons to have them.
First, each factor x possibly involves the spherical inte-
gration factor 4w or 47 /3 in addition to PU factor. In
this paper we have included the factor 47 into the def-
inition of our factor x Eq. (4) contrary to the previous
work. This is done because this factor naturally appears
in the localization criterion (3) and correspondingly it
can enter the rate expressions of the Table. Thus the pa-
rameter of interaction weakness PU ~ 10~% —10~2 can
be increased by the order of magnitude. Accordingly,
the “linear” expression for the relaxation rate Eq. (24)
agrees better with the results of the systematic internal
friction measurements performed by Classen, Burkert,
Enss, and Hunklinger [6]. We believe that the factor
x = 4mPU reflects the absolute values of relaxation rates
better than the smaller factor y = PU itself. The accu-
rate calculations of the numerical factors are beyond the
scope of our qualitative study. The alternative explana-
tion for a quantitative disagreement [6] can be based on
the strong non-linearity. For instance, the extra-factor
a/w in the relaxation rate (see Eq. (46)) can account
for the difference of theory and experiment as well. The
comparison of our predictions with experiment can still
be performed using the experimental data for different
glasses, with different values of the parameter . Note
that the preliminary numerical analysis of the Floquet
state delocalization, described in Sect. 3, in the equiv-
alent one-dimensional model supports our expectations
of the large numerical prefactor, exceeding unity by at
least one order of magnitude.

Another possible problem of the direct application
of our theory to the experiment is that the interaction-
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induced relaxation leads to the equilibration within the
TLS subsystem rather than for the whole system. This
is similar to spin-spin and spin-lattice relaxations in the
NMR problem. Then in order to describe the heat bal-
ance between TLS and phonons, one should introduce
the separate TLS and phonon temperatures and perform
the thermal balance analysis for the whole system. This
study is beyond the scope of this paper.

The crossover temperature between two regimes de-
pends on the external field parameters a and w. It usu-
ally reduces with decreasing the field amplitude and can
also decrease with decreasing the field frequency (see
the Table). This knowledge helps us to understand
the absence of the interaction-stimulated relaxation re-
ported by Pohl and coworkers in Ref. [38]. In this work,
the strain field amplitude was made extremely small
€ < 1078, while the frequency w ~ 0.5 MHz is higher
than in other group studies [4-6] and belongs to the
range described by the fourth column of the Table, when
the relaxation rate decreases with increasing w.

Our results agree with the recent low-temperature
measurements of the dielectric constant by Ladieu and
coworkers [24, 39], which can be interpreted assuming
that the TLS relaxation rate becomes temperature in-
dependent. This shows the dependence on the external
field amplitude 1/a (the second row of the Table). An-
other very interesting discovery of Ladieu and coworkers
includes the sensitivity of the TLS relaxation rate to the
sample thickness. The suggested theory is essentially
three dimensional. If the thickness of the sample will
be less than the typical distance between resonant pairs
(around few tens of nanometers) then the irreversible re-
laxation will remarkably slow down. This agrees with
the observations of Ref. [24, 39]. More accurate theo-
retical analysis of the data is necessary for the careful
interpretation.

Our predictions can be directly verified using the
non-equilibrium measurement technique developed by
Osheroff and coworkers [5, 40], which is based on the
analysis of the system response to the large sweep of the
external electric field Epc taking different times 7,. Our
results for the field-stimulated relaxation are valid in this
case if one takes a ~ Epcprrs (where prrs ~ 1D is the
typical TLS dipole moment) and w ~ 1/7,. Since the
maximum possible amplitude a is very high a > 0.1K,
while the minimum “frequency” is as low as w ~ 1571,
all the regimes described in the Table can be attained
and analyzed.
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