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Electronic spectrum and ballistic transport in bent nanotubes
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It is shown that bending of a nanotube leads to splitting the electron energy levels due to breaking the

azimuthal symmetry.

The bent section of the nanotube acts as a scatterer for ballistic carriers resulting in

qualitative changes in the dependence of conductance on the Fermi energy.

PACS: 61.46.+w

A few past years were marked by growing interest in
electro- nanomechanical structures.These are freely sus-
pended objects of a nanoscale size in which it becomes
possible to affect the electron motion by making use of
mechanical degrees of freedom of the structures: bend-
ing, twisting, folding in a roll, etc. In such situations
one deals with electronic waves propagating in curvelin-
ear waveguides and electrons are subjected to the action
of the so called geometric potential (see, e.g., [1] and ref-
erences therein).

In a strictly 1D case (curved quantum wire), the geo-
metric potential attracts particles, independent of their
charge, to the point of maximal curvature and formation
of a bound state is, in principle, possible. A more com-
plicate situation occurs for electrons confined to move
upon the surface of a hollow cylinder (nanotube). Just
this case is analyzed in the present paper.

1. General relations. Consider a nanotube with
the semiconductor type of the electron energy spectrum:
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where m = 0,+1,+2... is the azimuthal quantum num-
ber, k is the longitudinal momentum, B is the rotational
constant, B = h?/2ua?, a is the nanotube radius and
/mu is the effective mass. All states with m # 0 are dou-
bly degenerate since energy is independent of the sign of
azimuthal moment m. If the nanotube is bent, its cylin-
drical symmetry breaks down, and this should result in
splitting of the states +m as well as in a shift of all the
energy levels. The reason of such changes in the energy
spectrum stems from the geometric potential and, be-
sides, the kinetic energy operator is modified (see [2, 3]
and more recent works [4, 5]). Both these factors cause
also the electron scattering and, hence, affect the ballis-
tic conductivity of nanotube. In the situation in question

we deal with 2D carriers moving on a bent cylinder. The
geometric potential has the form [2, 3]:
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Here R;, R> are the pr1n01pa1 radii of curvature in the
point on a surface where electron resides. The operator
of kinetic energy is, of course, the Laplacian presented
in the proper curvelinear orthogonal coordinates v and
v:
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where g is the determinant of the metric tensor. For the
situation in question R; = a is the “eigen” radius of
nanotube, while B2 = R is the curvature radius of the
bent nanotube.

Suppose the nanotube is bent without twisting, in
other words its axis remains a plane curve. Then each
small part of the nanotube can be considered as an arc of
torus with the local big radius R(s), where s is the length
of the nanotube axis counted from an arbitrary origin.
As to small radius of the torus it remains constant for
any s and equals a. The pair of coordinates u,v can be
chosen as u = ay, v = s, where ¢ is the azimuthal angle
in the torus cross-section. Then the squared element of
length on the torus surface takes the form

di® = a®dy? + (1 + acosp/R(s))%ds?, 4)

while the Laplace operator reads:
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The geometric potential in the coordinates ¢, s is
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By introducing the function (¢, s) instead of the wave
function 9 in accord with the relation ¢ = x/ v'h one
can eliminate the first derivative 8/0¢ and obtain the
Schrodinger equation:
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In what follows two effects will be considered in which
the bending of nanotube is manifested.

2. Spectrum of a torus arc. Consider the sim-
plest case: R(s) =const for 0 < s < L, so we deal with
a piece of torus of the lengths L. The boundary condi-
tions are: ¥(0) = ¢(L) = 0. Eq. (7) gives immediately
x = F(p)sink,s with k, = nw/L, n is integer and we
obtain a 1D Schrodinger equation with a rather compli-
cate effective potential energy Ues(y). It is reasonable to
suppose the condition a < R is satisfied and to look for
the energy spectrum in the frames of perturbation the-
ory. To do this one has to expand Ues () up to terms of
the order of (a/R)? because these terms contain the fac-
tor cos 2y that gives splitting of the states m = +1 in the
first order of perturbation approach, while the terms of
the type acosp/R give the same splitting in the second
order!). The splitting is determined by the combined
matrix element:

V(I)V(l)
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where V(1) and V(®) denote the contributions from cos ¢
and cos 2¢p, respectively. The results of calculations give
for three lowest subbands of the toroidal segment of nan-

otube:
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Thus, the absorption line of inter- or intraband transi-
tions in which the subband m = =£1 is involved splits in
accord with Eq. (10) if the nanotube is bent. The split-
ting rapidly increases with increasing the quantum num-
ber of the longitudinal motion n (as n*). Of course, the
perturbative approach should be valid, i.e. k2a? < R/a.

3. Ballistic transport in bent nanotubes. It is
clear from the previous consideration that any bent part

DIt is easy to see a similarity of the problem in question with
A-doubling in the spectra of biatomic molecules.
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of nanotube acts as a scatterer for mobile electrons. In
quasi-1D objects scattering simply means nonzero re-
flection coefficient R and the transmission coefficient T’
not equalled to 1. Hence, the well known staircase-like
dependence of conductance on the Fermi energy should
be modified for a bent nanotube.

Suppose the nanotube is asympotically rectilinear,
i.e. R(s) — oo for s — +oo and suppose, in addition,
that R(s) changes slowly as a function of its argument s:
dR/ds < 1. Then the adiabatic approach to the prob-
lem can be developed: at first to omit the term with
derivatives 8/0s in Eq. (7) and to find the "momen-
tary” eigenfunctions x;(p,s), where s is treated as a
parameter. Then to search for the total wave function
as the expansion Y’ ¢;(s)xi(y, s). An interesting feature
of the situation in question is dependence of the coeffi-
cient at ”slow” part of the Hamiltonian (with derivatives
0/0s) on the ”fast” variable p: h depends on ¢. Hence,
even if one neglects the terms d;/8s and 8%x;/ds> (the
zeroth adiabatic approximation) the system of equations
for slow amplitudes ¢;(s) will not become decoupled as it
usually is the case in other adiabatic problems. Actually,
the effective mass in our case is a matrix (depending, of
course, on §)

_% k <i> % +€i(8)ci(s) = Eci(s), (11)

where ¢; are given by Egs.(9), (10) with k, = 0 and
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In what follows an example is considered when only
three states xo and y+ contribute to the total conduc-
tance. In other words the Fermi energy lies below the
bottom of the subband m = +2: 0 < Er < 4B.

If Er < B only the state m = 0 is involved and the
bending results merely in arising a potential well of the
depth h?/8uR? (see Eq. (9)). For small Fermi energy
Er < o?B, a = a/R, the transmission coefficient in
the channel m = 0 tends to zero in accord with the well
known formula

E
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where W depends on the potential shape but is inde-
pendent of E. Thus, the conductance G of the bent
nanotube depends linearly on Er for very small Ep in
the contrast with the ideal (rectilinear) nanotube. In the
latter case G = Gy = e?/2nh (per one spin projection)
right from zero Fermi energy, because in nanotubes there
exists a nontrivial solution of the Schrodinger equation
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for E = 0: 9y = 1/\/% (this is not the case for a 1D
plane strip due to zero point energy).

Consider now the case B < Er < 4B (the second
step in the conductance), when three channels are in-
volved m = 0 and m = £1. It is easy to see that all
perturbation terms in Eq. (7) contain only cosp and,
hence, preserve the parity of the solutions. That is why
it is reasonable to choose three eigenfunctions of the ze-
roth approximation as?) ¢y = 1/v/27, ¥, = cosp//T,
P_ = sinp/+/m. Then the ¢_ state is split off and we
come to the following pair of coupled equations for the
slow amplitudes ¢g, ¢4 (only leading terms of the ex-
pansion in a(s) are kept):
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where k? = 2uE/h?, ¢> = 2u(E — B)/h? = k? — 1/a®.

Thus, the nanotube bending causes now both reflec-
tion of the electron waves and interchannel transitions.
This results in distortion of the rectangular shape of the
steps in the dependence G(Ep). In the multichannel
situation G(EF) is given by the sum [6] Too + T+ +
+T__ +Toy +Tyo- The system (14) has been analyzed
for a(s) in the form of a rectangular barrier. However it
is easy to see that, due to the threshold character of the
transitions under consideration, the results have general
meaning.

For Fr close to B the transmission coefficient Tgo
may be put to be equalled 1 as the barrier height
~ aB <« Ep. The coefficients Ty, and T__ in the
region of onset of the second step (Er — B < B) corre-
spond to slow incoming particles and are described by
formulae of the type (13) with slightly changed W as it
follows from Egs. (9) and (10). At last, T’ relates to the
interchannel scattering in the threshold regime (slow par-
ticle in the final state) and depends on energy as +/E — B
(finite matrix element at £ — B times the ratio of the

2)Here “+” and ”-” denote even and odd solutions, correspond-
ingly.

current densities in subbands ¢, and £¢)%). The same is
true for Ty - all is similar to the transmission of a quan-
tum particle over a potential wall at the energy slightly
exceeding the wall height. The latter in our case equals
B - the separation between the bottoms of subbands €
and gg. So, the leading contribution to the conductance
comes from interchannel scattering and the second step
in G(EF) starts as Go(1 + consty/Er — B). This law
holds only for Er — B < aB. With energy increasing
(¢?a® > 1) the coupling terms in Eqgs.(13) become unim-
portant, 7, T tend to 1 while 7'y, Tp; decrease
and G(EF) reaches its second quantized value for the
rectilinear nanotube 3Gy. It is clear that similar behav-
iour of G(EF) should be expected at the onsets of all
the other steps.

In conclusion, bending of a nanotube results in split-
ting the energy subbands due to breaking the azimuthal
symmetry. Qualitative changes arise at the onset of each
step in the staircase-like dependence of ballistic conduc-
tance of nanotube on the Fermi energy.
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3)Strictly speaking the density of current in a curvelinear sys-
tem is changed (V; = (1/h)d/8s) but asymptotically at s — too
we have h = 1.
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