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Polariton dispersion of periodic quantum well structures
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We studied polariton dispersion relations of a periodic quantum well structure with a period in the vicinity
of half the exciton resonance wavelength, i.e. Bragg structure. We classified polariton modes using an approx-
imation of large quantum well number. The polariton effective masses are found to be very small, 1072 — 1074

of the free electron mass.
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Semiconductor structures allow an engineering of the
light-matter interaction. The band structure and disper-
sion relation of the coupled mode of exciton and photon,
called polariton, can be controlled by the structure de-
sign, opening great opportunities for fundamental stud-
ies of exciton and photon physics as well as for device ap-
plications. Recently, considerable attention has been de-
voted to the study of photon-matter interaction in semi-
conductor microcavities (MC’s) [1] and photonic band-
gap materials [2], structures characterized by the size of
the light wavelength. One of the advantages of polari-
ton dispersion engineering is the possibility to construct
a bosonic quasiparticle with extremely small effective
mass, m. In particular, due to the small density of states
in such a system, a statistically degenerate gas of polari-
tons might build up already at high temperatures and
small densities (the temperature at which quasi-2D gas
of noninteracting bosonic quasiparticles becomes statis-
tically degenerate is To = wh’n/2mkg [3]).

In this paper we consider the system of polaritons in
a periodic quantum well (PQW) structure with a period
in the vicinity of half the exciton resonance wavelength,
i.e. in a Bragg structure. In PQW structures, due to the
total confinement of excitons in QW'’s the propagation of
polaritons through the PQW is only possible because of
electromagnetic transfer of excitation through the bar-
rier layers; in that sense they are Wannier-Mott excitons
for in-plane motion and Frenkel excitons for motion in
the growth direction [4]. Before there were any experi-
ments, several unique properties of polaritons in PQW
structures have been predicted [4—9]. Ivchenko et al.
[8] made two related and significant predictions. First,
in an infinite Bragg structure with d = A\/2 the normal
light wave is a standing wave characterized by two wave
vectors @ = £7/d with a field E(z) « sin(rz/d) with

nodes at every QW positions. This wave does not cou-
ple to excitons because the optical transition matrix ele-
ment « [ dzE(z)¥(z) is minimum and, therefore, Bragg
PQW structures with a large number of QW’s emit and
absorb resonant light poorly in the normal direction [8].
Second, although it is a poor emitter, a Bragg structure
is an excellent reflector: due to constructive interference
between the light waves reflected by the various QW'’s,
the reflectivity of the Bragg structure is dramatically en-
hanced; in fact, in reflectivity or transmission, a set of N
QW’s with d = A/2 is equivalent to a single QW (SQW)
with a radiative coupling coeflicient N times amplified
over the value for a SQW [8].

The theoretical predictions initiated intense experi-
mental studies. A strong amplification of the reflectance
in Bragg PQW structures was observed [10]. The en-
hancement of the signal decay rate in the Bragg struc-
ture was observed in degenerate four-wave-mixing ex-
periments in reflection geometry [11]. Recently, almost
100 % reflectivity and the onset of a photonic band gap
were observed in a Bragg PQW sample with N = 100
QW’s [12]. These experiments verified that the con-
structive interference between the light waves reflected
by the various QW'’s can be treated as a huge (< N) en-
hancement of the radiative coupling coefficient [8]. Fur-
ther resonant excitation studies revealed that not only
are the spectra of transmission, reflection, and absorp-
tion dominated by radiative coupling effects but also so
is that of resonance Rayleigh scattering [13, 14].

In this paper, we study polariton dispersion relations
of high quality Bragg and nearly Bragg PQW structures
with d & A/2. In our experiments e-h pairs are gener-
ated by continuum absorption and lose energy by inco-
herent processes, populating low energy carrier and po-
lariton states. As shown in [12], under these conditions
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the PL spectra of a PQW structure can not be explained
by the radiatively uncoupled incoherent emission of 100
individual QW’s but is dominated by cooperative emis-
sion from radiatively coupled QW's, i.e. by polaritonic
states. Radiative coupling between the QWs is present
without any external coherent excitation.

The non-AR coated PQW sample (DBR28) contains
N = 100 8.5-nm-thick Ing o4GagogAs QW’s between
GaAs barriers (for details see Ref. [12]). The use of
low-In-concentration QW’s ensures that the background
refractive indices of the well and barrier are nearly iden-
tical, thereby eliminating the photonic band gap arising
from a distributed Bragg-mirror-like reflectivity. The
drop off of flux with increased radius during growth on
a rotating substrate provides an experimental way to
continuously scan d. For cw PL studies, the excitation
was provided either by a HeNe laser (excitation energy
hw = 1.96 V), or by a Ti:Sapphire laser. The excita-
tion was focused to a 50 pym spot. Experiments were
performed in a He* cryostat at T = 1.5 K.

The theoretical analysis of the polariton mode dis-
persions is based on the transfer matrix approach that
describes light propagation through a multiple layered
structure by solving Maxwell’s wave equation including
the corresponding boundary condition at each interface
(LDT). According to Refs. [5, 9] the eigenmodes of the
selfconsistently coupled light-QW-exciton system in in-
finite PQW structure obey the dispersion relation

Tok/k,

cos(Qd) = cos(k,d) — wo—w_iT

sin(k.d), (1)
where @) is the wave vector of light along the PQW
growth direction reduced to the first Brillouin zone,
k = w/he, k, = +/epk? — k2, k, is the in-plane po-
lariton wave vector, wq is the exciton resonance energy,
To and T are, respectively, the radiative and nonradia-
tive exciton damping constants in a single QW. As it
was shown in Ref. [9], for finite QW number N the
eigenmodes correspond to the discretized values of the
complex wave vector ). For large N, the values of the
wave vector tend to become real and equally spaced and
Eq. (1) transforms to

FO(w0 - w)k/kz

cos(Q;d) = cos(k,d) — (o —w)2 1 T2

sin(k,d), (2)
where Q; = %%,j = 1,..., N. The roots of the Eq. (2)
w = w(j, k) correspond to the eigenenergies of the po-
lariton modes. The polariton energies also tend to be-
come real for large N and, therefore, since the imaginary
part of the energies yield the radiative width of PQW po-
laritons, polariton states become stationary in the high
N limit, similar to bulk polaritons [7, 9].
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The origin of the polariton modes in PQW structures
can be understood with the schemes shown in Fig.1.
Fig.1a shows schematically dispersion of polaritons in
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Fig.1. (a) The scheme showing the dispersions of po-
laritons in PQW structures. In infinite periodic struc-
tures the polariton dispersions in the PQW growth
direction (dotted lines) are constructed from the pho-
ton dispersions (bold lines), their replicas (thin lines),
and exciton dispersion (dotted line). The polariton
branches obey Eq. (2). The transition from infinite to
finite number of QW'’s, N, corresponds to the transi-
tion from continuous @ to discrete modes. For large
N the energies of the discrete modes (dots) fall on
the continuous branch dispersions at Q; = % %, j=
= 1,...,, N (vertical dashed line). (b) An example of
in-plane dispersions of polariton mode branches cal-
culated using Eq. (2). Dotted lines represent disper-
sions of the exciton and standing waves of light. The
polariton mode dispersions (solid lines) are formed by
anti-crossing dispersions of the exciton and photon

the PQW growth direction. For infinite N the polari-
ton dispersions are constructed from the photon disper-
sions, their replicas, and exciton dispersion. We con-
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centrate below on the energy region close to the exciton
resonance. Around wyg, there are three PQW polariton
branches originating from the folded photon dispersion
and exciton dispersion: the upper (U), the middle (M),
and the lower (L). The splitting between the branches
at the anticrossing point at Q = w/d, proportional to
the electromagnetic coupling between the photon and
exciton, is small compared to wp and is exaggerated in
Fig.1a. For finite and large N, the energies of the dis-
crete modes fall on the continuous branch dispersions at
the momenta (; = g%,j = 1,...,N, for the j-th po-
lariton mode, i.e. the continuous branch and discrete
modes obey Eq. (2) with the same r.h.s. We mark the
upper j-th mode as U; and so on. Figure 1la presents
the case of a Bragg structure with d = A/2, i.e. with
wo = wc/d,/€p, the variation of the scheme for different
d is straightforward. An example of the in-plane dis-
persions for U, M, and L polariton branches is shown in
Fig.1b. The dispersions were calculated using Eq. (2)
for d/X = 0.501, Q; = 0.997/d and Ty = 20 ueV. The
polariton modes are formed by the anti-crossing disper-
sions of the exciton and standing waves of light (Fig.1b).
Note that, the mode My is a standing wave with a field
E(z) « sin(mz/d) with nodes at every QW positions
Vd and Vk, and its optical transition matrix element is
equal to zero.

Figure 2a shows cw spectra of PL emitted in the di-
rection normal to the PQW structure. Spectra are taken
from different positions on the sample corresponding to
different period d as labelled in Fig.2a. Figures 2b and
2¢ present the measured PL energy and intensity of po-
lariton modes at k, = 0 corrected for the exciton energy
shift due to the QW thickness change. The radiative
mode splitting well exceeds the inhomogeneous exciton
linewidth. The solid and dashed lines show positions
of the eigenmodes at k, = 0 calculated using Eq. (2).
The best agreement between the experiment and Eq. (2)
is achieved using T'g = 20ueV (dashed lines). The
linear fit to reflectivity spectrum HWHM vs N gives
a value of Iy = 27peV [12]. The eigenmodes calcu-
lated using Eq. (2) with Ty = 27ueV are also shown in
Fig.2b. All polariton modes observed in the experiment
are clearly classified. This confirms that the QW number
N = 100 is large enough to validate the approximation
of Eq. (2) with real and equally spaced Q; [9]Y). Figure
2¢ shows eigenmodes (solid lines), reflection dips (tri-
angles), and absorption peaks (squares) calculated for

D The calculation of the complex wave vectors Q by using the
transfer matrix of the finite 100-QW structure [9] shows that there
is a finite imaginary part at periods where the corresponding mode
is bright. This implies that the large-/N approximation is not val-
idated over the whole range of periods.
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Fig.2. (a) PL spectra in normal direction in reflec-
tion geometry for the non-AR coated N = 100
Ing.04Gag.06 As/GaAs PQW structure under cw non-
resonant excitation at 1.96 eV. Spectra are taken from
different positions on the sample corresponding to dif-
ferent periods d; T' = 1.5K. The poor emission in
the normal direction at Bragg resonance, d = \/2,
reveals the vanishing overlap between the QW exci-
tons and the standing wave of light. (b) The mea-
sured PL energy and intensity of polariton modes
vs d (greyscale map). The mode energies calculated
using Eq. (2) with Tg = 20 peV (To = 27 peV) are
shown by dashed (solid) lines. The mode classifica-
tion includes the branch U, M, or L index and the
j = 1,..., N number, see Fig.1. The optically inac-
tive My mode is absent in the PL spectra. (c) Ab-
sorption peaks (squares), reflection dips (triangles),
and eigenenergies (solid lines) calculated using LDT
through a finite non-AR coated 100 QW structure.
Note, the functional dependence of A on the period is
different for an AR-coated structure

N =100 PQW using a Lorentzian excitonic susceptibil-
ity within a LDT approach [12]. Here, the absorption A
is defined as A = 1— R—T, where R is the reflection and
T is the transmission. The best agreement between the
experiment and the theory is achieved using I'g = 27 ueV
in agreement with [12]. As expected, PL clearly follows
the absorption, thus the results of the LDT calculations
are in good agreement with the experiment.

To measure the dispersion of the PQW polariton
modes, we studied angularly resolved PL following ex-
periments in Ref. [15], where this method was applied to
study the dispersion of polaritons in MC’s. The polari-
ton mode dispersions are revealed via their PL energy vs
k. = ksin¢ dependence, where ¢ is the external angle
between the emitted photon and the direction normal to
the PQW structure. The measured dispersions of the
polariton modes are presented in Fig.3. The dashed
lines show positions of the eigenmodes calculated using
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Fig.3. Measured PL energy of polariton modes
(solid points) in non-AR coated N = 100
Ing.04Gag.o6 As/GaAs PQW structure with d =
= 0.5025A vs k, under cw nonresonant excitation at
1.495eV; T = 1.5K. Triangles correspond presum-
ably to the PL of localized states. The mode energies
calculated using Eq. (2) with I'o = 20 peV are shown
by dashed lines. The polariton effective masses are
extremely small: e.g. the quadratic fit to the mode
My _ dispersion at small k, yields m =~ 5 - 10~ *my.
The calculated absorption peaks using a Lorentzian
excitonic susceptibility for the propagation through a
100-QW non-AR coated PQW structure with T'g =
= 27peV are shown by open squares

Eq. (2). Dispersions of the polariton modes numerically
calculated using LDT for 100 QW’s (open squares) are
in good agreement with the experimental data, see Fig.3.
The calculation based on Eq. (2) has no fitting parame-
ter and uses the value of I'y obtained from the fit to
the experimental data in Fig.2. The main result of the
polariton dispersion measurement is that the polariton
effective masses are very small. In particular, for the
mode My_1, m =~ 5-10"*my, close to the effective mass
of microcavity polaritons. This agreement is natural as
the polariton dispersions are determined by the anti-
crossing dispersions of an exciton and standing waves
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of light both for PQW’s and MC’s. Note that small
density-of-states-effective-mass [1/m = 2/h20E/d(k?)]
is characteristic for most of the polariton modes (Fig.3).

We notice that the linewidth of the polariton PL from
the N = 100 PQW sample is sometimes narrower than
the linewidth of exciton PL from SQW’s grown under as
nearly as possible identical conditions. The smallest PL
linewidth, ~ 0.15meV, observed in N = 100 PQW at
d =~ 0.5025 is ~ 4 times narrower than the exciton PL
linewidth in the SQW’s. The effect of the line narrowing
due to the radiative coupling between the QW’s clearly
dominates over broadening effects originating from QW
thickness inhomogeneities, etc.
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