Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 74 (2001) | ISSUE 5 | PAGE 309
On critical behavior of phase transitions in certain antiferromagnets with complicated ordering
Abstract
Within the four-loop \varepsilon expansion, we study the critical behavior of certain antiferromagnets with complicated ordering. We show that an anisotropic stable fixed point governs the phase transitions with new critical exponents. This is supported by the estimate of critical dimensionality NcC=1.445(20) obtained from six loops via the exact relation N_c^C=\frac{1}{2} N_c^R established for the real and complex hypercubic models.