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The stability of polarization, areas, and number of self-induced transparency (SIT)-solitons at the output
from the LaF3 : Pr3T crystal is theoretically studied versus the polarization direction and the area of the input
linearly polarized laser pulse. For this purpose the Vector Area Theorem is rederived and two-dimensional
Vector Area Theorem map is obtained. The map is governed by the crystal symmetry and takes into account
directions of the dipole matrix element vectors of the different site subgroups of optically excited ions. The Vec-
tor Area Theorem mapping of the time evolution of the laser pulse allows one to highlight soliton polarization

properties.

PACS: 42.50.-p, 42.65.-k, 78.20.-¢

For an isotropic medium stability properties of self-
induced transparency (SIT)-solitons are determined by
the Area Theorem. The Area Theorem is the name given
to a theoretical result that governs the coherent nonli-
near transmission of short light pulses through isotropic
materials, effectively two-level media, that have an ab-
sorption resonance very near the frequency of the inci-
dent light. In 1967 McCall and Hahn [1] identified a new
parameter (called “Area” and denoted by 6) of optical
pulses travelling in such media, and then predicted that
the Area obeys the simple equation

% - —% sin, 1)
where « is the attenuation coefficient for the material.
The two most striking consequences of the Area Theo-
rem are: (i) pulses with special values of Area, namely
all integer multiples of 7, are predicted to maintain the
same Area during propagation, and (ii) pulses with other
values of Area must change in propagation until their
Area reaches one of the special values. This property
can be shown to be unstable for the odd multiples, but
the even multiples enjoy the full immunity of the theo-
rem. The Eq.(1) was derived for the isotropic material
in which the dipole matrix element vector of any ion is
parallel to the electrical field vector of the light pulse.
On the contrary, the direction of the dipole matrix ele-
ment vector of any Pr3* ion in LaF3; does not depend
on the electrical field vector of the light pulse. So it is
necessary to rederive Area Theorem taking into account
directions of the dipole matrix element vectors of the
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different subgroups of Pr3* ions. Pr®t ions in a LaF;
unit cell can replace La3t in six different types of sites
(a,£8,+7). The local environment of any of them
has Cy-symmetry. The six local Cy-symmetry axes are
located in the plane normal to the C5 axis and make the
angle of 27 /6 in this plane (Fig.1). The electrical dipole

Fig.1. Directions of the local Cs-symmetry axes for
the different Pr3* ion sites in the plane normal to the
Cs-axis of the LaF3 : Pr3T crystal.

matrix element vector of the Pr®t ion (optical transition
Fl — Fl)
pJ:peJajzlaaﬁ (2)

is directed [2] along the local C; symmetry axis

27, . .27
ej = (cos(j5),sin(G ), e:-e;=0, (3)

where e; is the unit vector along the C3; axis. Here the
axis Z is directed along the C5 axis and the axis X along
the a axis. We define the Vector Area of the light pulse
as

+oo
®— %/_w dtE(z,1), (4)
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where E(z,t) is vector amplitude of the light pulse, p
is electrical dipole matrix element, A is the Planck con-
stant. Taking into account Egs.(2) and (3) and using
arguments [3] we can write the equation for the Vector
Area as follows:

RLC) 1w .
i —aEZej sin(@® - e;), (5)
j=1

if a light pulse propagates along the Cs-axis. Here o

is the linear attenuation coefficient for LaFs : Pr®t. As

® — 0, Eq.(5) transforms to
00 a
—=—-—-0 6
az 2 ’ ( )

as expected for a small pulse Area.

Equating the right-hand side of the equation (5) to
zero we can find special values of the Vector Area where
00®/0z = 0. It can be made more obviously and easily

from the graphical representation. We can rewrite eq.
(5) as

00 8 ag
E = %g ZCOS(@ . e]) (7)
i=1

and the problem is reduced to a determination of
points in a two-dimensional plane, in which the function
>-cos(® - e;) has extremes. The circles and triangles
in Fig.2 give the contour plot of this function. We easi-
ly find three types of special values of the Vector Area,
namely

O, =mO4 +nO_, (8)
G)u = G)c + Uj, (9)
e, =®C—|—SJ’, (10)

which are predicted to maintain the same Vector Area
during propagation. Here m and n are arbitrary integers
and

2 21
e, =——" k = —— kg 11
T cos(w/6) cos(m/6) (11)
T
= ———k; 12
5 cos(m/6) 7’ (12)
T
= " A 1
1 cos?(m/6) € (13)
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Fig.2. Vector Area Theorem map. The ® /2w projec-
tions to axes X and Y are plotted on axes X and
Y accordingly. The vectors s; (12) and u; (13) are
shown in the upper part of the figure. There are the
basis vectors @4+ and ®@_ (11) and the unit vec-
tors along the local Ca> symmetry axes (+a, —3, —7%)
in the lower part of the figure. Vector coordinates
of some unit cell centers are also shown. Bold lines
0 and 1 are mappings of the time evolution of laser
pulses with mod (®p) = 47 and the angles between
the directions of the Vector Area and the crystallo-
graphic axis « are 0 and —1 degrees respectively. In
this case aL = 20, where L is the sample length and
a is the attenuation coefficient. The bold line 2 is the
mapping of the time evolution of the laser pulse with
mod (2@¢) = 8w and the angle between the directions
of the Vector Area and the crystallographic axis « is
+1 degree and aL = 40. The bold line 3 is as 2 but
alL =80

where the unit vectors e; (3) and k; are directed re-
spectively along and between the C> axes:
2w

2 7 ..
k; = (cos (]? - g), sin (JF - E))'

These special points (8)—(10) give rise to a two-
dimensional lattice in a ®@-phase plane with basis vec-
tors @, and @_ (11) as it is shown in Fig.2. A unit cell
of the lattice is determined by symmetry of the crystal.
It is a regular hexagon. The hexagon centers are @,
(8) (centers of the circles in Fig.2). As measured from
the hexagon center, coordinates of the six apices of the
hexagon are u; (13) (centers of the triangles in Fig.2),
coordinates of middles of the sides of a hexagon are s;
(12). It is obvious from Egs.(5), (7) and definitions (8)—

(14)
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(10), that in a neighborhood of these special points the
Vector Area behaves as

00 a
5 = —5@-0.), (15)
00 «a
o =500, (16)
and as
00 a
S = s@-0y), (1)

if @ — @, is directed along the side of a hexagon, and

00 e
e +§(® - 9,), (18)
if ® — ©; is directed perpendicularly to the side of
a hexagon. Therefore, for an absorbing (amplifying)
medium with o > 0 (@ < 0), the points (8) are of the
type of a stable (unstable) knot, the points (9) are of
the type of an unstable (stable) knot and the points (10)
are of the type of a saddle in the ®-phase plane. Below
we shall explore a case of the absorbing medium with
a > 0. If the input pulse Vector Area falls inside the
unit cell then the Vector Area must change in propaga-
tion until it reaches the unit cell center. If the input
Vector Area does not equal to (9), (10) and falls on a
side of a hexagon then the Vector Area must change in
propagation until it reaches the middle of the hexagon
side. It is necessary to note that the Vector Area Theo-
rem map (Fig.2) allows us to easily predict only the sum
of the pulse vector areas at the output from the sample.
To determine the number of the output SIT-solitons and
their polarization and area we should solve the system
of coupled Maxwell-Bloch equations.

The input pulse with the Vector Area directed be-
tween the crystallographic axes and equal, for exam-
ple, to @, excites only four (+a,+v ) ion subgroups.
This pulse is 27-pulse for these ions. It does not excite
+(-ions, because @ le;g. Similarly, the input pulse
with the Vector Area equal to @_ is the 27-pulse for
(xa, £ )-ion subgroups and does not excite +y-ions.
If the input Vector Area is parallel to the @ (@_) and
falls inside the unit cell @, = m@®, (@, = m®_), then
the time evolution of the pulse may be described by the
inverse scattering method. The input pulse is split at
the output into m SIT-solitons with Vector Areas equal
to ®4 (®_), as in the isotropic medium. We refer to
these solitons as @ -solitons and @ _-solitons. If the
input Vector Area is not parallel to the @ (®_) but
falls inside the unit cell @, = m@®4 (@, = m®_), then

6
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Fig.3. Time evolution of the amplitude of the laser
pulses at the output of the sample. Values of the
input Area, the angles between the directions of the
Vector Area and the crystallographic axes a and the
parameter aL for the curves 0, 1 and 2 are the same
as for the curves 0, 1 and 2 in Fig.2. The parameter
value aL for the 0 degree curve in the lower part of
the figure is the same as for curve 2. The dotted line
is input pulse, ¢, is input pulse duration. The Vector
Area Theorem mapping (curves 1 and 2 in Fig.2) al-
lows one to easily spot the polarizations and the areas
of the solitons in the curves I and 2 in this figure

numerical calculations show that the input pulse also is
split into m @4 (@O _)-solitons at the output.

If the input pulse Vector Area is directed along the
crystallographic axis, for example the axis a, and is
equal to

® =0, +0., (19)

then all (+a,+08,+7) ions are excited. The input
pulse is the 27-pulse for (+£3,+7) ion subgroups and
the 4m-pulse for (+a) ions. The time evolution of the
pulse is not described by the inverse scattering method.
The numerical calculations show that if the input Vec-
tor Area @, is parallel to the ®¢ and falls inside the
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unit cell @, = m®,, then the input pulse is split into m
SIT-solitons with Vector Areas equal to ®@g. We refer
to these solitons as @g-solitons. Let the input Vector
Area be not parallel to the ®¢ and falls inside the unit
cell @, = m®g. Then, as one can see in Figs.2, 3, a
small change of the input pulse polarization leads to the
splitting of each ®g-soliton into @,-and O _-solitons.
Therefore a number of solitons and their polarization
strongly depend on the direction of the vector ®;, with
respect to the crystallographic axis. This conclusion
is also valid in the general case when the input Vector
Area falls inside the unit cell @, = m@® +n®_, where
m # n. This is valid because the unit cell center coor-
dinates may be rewritten as @, = (m — n)®, + n@ if
m>noras @, =(n—m)O_+mO if n > m. At first
there are (m — n)®_-solitons for m > n, or (n —m)O_-
solitons if n > m at the output. Then the number of soli-
tons appearing at the output depends on the direction of
the vector @;, — (m — n)@4 or @4, — (n —m)O_ with
respect to the crystallographic axis. In the stable case
the output solitons are @ -solitons and ®_-solitons and
their number is (m + n).

For the amplifying medium ® 4 -solitons and @ _-soli-
tons are unstable so the polarization of the output soli-
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tons must be directed along crystallographic axis in the
stable case.

It is necessary to note that for circular polarization
of laser pulse the equation for the Area is of the form
(1) as in the case of isotropic medium.

To summarize, we have shown on an example of the
model system LaF3 : Pr®t that the Vector Area mapping
of the pulse time evolution during propagation is an ef-
fective method to analyze the polarization properties of
solitons.

We thank Ildar Ahmadullin for the help at assimi-
lation of Fortran 90 and Ashat Basharov for the useful
notes. The research was supported by ISTC grant # 737
and by the Russian Foundation for Basic Research grant
#00-02-16510.

1. S.L. McCall and E.L. Hahn, Phys. Rev. Lett. 18, 908
(1967).

2. V.N. Lisin, Pis’ma v ZhETF 57, 402 (1993) [JETP Lett.
57, 415 (1993)].

3. G.L. Lamb, in: Elements of Soliton Theory, John Willey
and Sons, New York, 1980.



