Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 81-92
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 61-80
      Volume 80
      Volume 79
      Volume 78
      Volume 77
      Volume 76
      Volume 75
      Volume 74
      Volume 73
      Volume 72
      Volume 71
      Volume 70
      Volume 69
      Volume 68
      Volume 67
      Volume 66
      Volume 65
      Volume 64
      Volume 63
      Volume 62
      Volume 61
Search
VOLUME 73 (2001) | ISSUE 5 | PAGE 274
Ginzburg - Landau-type theory of antiphase boundaries in polytwinned structures
Abstract
The conventional Landau - Ginzburg theory of interphase boundaries is generalized to the case of not small values of order parameters, with application to polytwinned structures characteristic of cubic-tetragonal-type phase transitions. Explicit expressions for the structure and energy of antiphase boundaries via the functions entering the free energy functional are given. A peculiar dependence of equilibrium orientations of antiphase boundaries on the interaction type is predicted, and it qualitatively agrees with available experimental data.