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Two-terminal conductance of a fractional quantum Hall edge
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We have found solution to a model of tunneling between a multi-channel Fermi ligiud reservoir and an edge
of the principal fractional quantum Hall liquid (FQHL) in the strong coupling limit. The solution explains how
the chiral edge propagation makes the universal two-terminal conductance of the FQHL fractionally quantized
and different from that of a 1D Tomonaga-Luttinger liquid wire, where a similar model but preserving the time
reversal symmetry predicts unsuppressed free-electron conductance.
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Low energy transport through an incompressible
quantum Hall liquid with gapped bulk excitations is car-
ried by gapless edge modes [1, 2]. For principal frac-
tional quantum Hall liquid (FQHL) of the filling factor
v = 1/odd these modes are described as a single branch
of a chiral Luttinger liquid (xLL) [3]. In presence of
the right and left chiral edges, the model of the FQHL
transport [4] appears to be equivalent to that of a metal-
lic phase of a 1D interacting electron gas [5] known as a
Tomonaga-Luttinger liquid (TLL) [6, 7]. To describe the
two-terminal transport experiments, the external reser-
voirs have to be added to the model [8, 2] so that the full
transport process includes transformation of the reser-
voir electrons into the FQHL/TLL quasiparticles in the
junctions. The transformation process makes the two-
terminal conductance of both the TLL wire [9, 10] and
the narrow FQHL junctions [11, 12] equal to the free
electron conductance og. The standard experimental
observation, however, is that the two-terminal FQHL
conductance is equal to the Hall conductivity vog (see,
e.g., [13]) but not oy, the fact that implies equilibration
between the chemical potentials of the reservoirs and the
outgoing edges [14]. This problem was recently studied
[15, 12] for the junction modeled as a sequence of point-
like contacts between the edge and different channels of
a multi-channel Fermi liquid reservoir under an addi-
tional assumption [15, 12] of suppressed quantum inter-
ference between electron tunneling at different contacts.
The purpose of this work is to construct quantum solu-
tion of the model of tunneling between a multi-channel
Fermi-liquid reservoir and the xLL edge. Our solution
shows how both the standard fractional quantization of
the FQHL conductance and the free electron conduc-
tance can be obtained not from the additional assump-

1)On leave of absence from A.F.Ioffe Physical Technical Insti-
tute, 194021 St. Petersburg, Russia.

tion of decoherence but from the appropriate account of
different patterns of quantum interference depending on
the junction structure. The solution explains (in obvi-
ous agreement with experiment) the difference between
the universal two-terminal conductance vog of the 1D
FQHL egde and conductance oo of the 1D TLL wire.

The model we consider represents n scattering chan-
nels of the spinless FL reservoir as free chiral fermions.
Tunneling from the channels (labeled by j = 1, ...,n)
into the edge (labeled by 0) is assumed to be localized
on the scale of magnetic length at the points z; along the
edge, where z; < z; for 1 <14 < j < n. It is described
by a tunnel Lagrangian:

n

Liunn = Y [Ui¥hg (x5, t);(5,t) +he], (1)

i=1

where U; are chosen real and positive. Bosonization
expresses the operators of free electrons v;(z,t) =
= (2ma) 1/2¢;e*i(®t) in the reservoir channels and
the operator of electrons propagating along the edge
Yo = (2ma)~1/2gyei®0(:)/V¥ through their associate
bosonic fields ¢;, the Majorana fermions £ accounting
for their mutual statistics, and a common factor 1/a de-
noting momentum cut-off of the edge excitations. Since
the spatial dynamics of the reservoir channels (I > 0)
does not affect the tunneling currents, velocities of these
channels are irrelevant, and we take them equal to the
velocity v of the edge excitations. Free dynamics of
the bosonic fields is governed then by the Lagrangian
Lo = Efzo(zb,f{ “14,)/2, where the differential opera-
tor is:

K_ld)l(mat) = 21

™

am (at + Ua:c)¢l (.’II, t)' (2)
The full Lagrangian £ = Lo + L¢ + Liunn also includes

an additional kinematic part £, = (1/4)£0;£ describing
a pure statistical dynamics of the Majorana fermions
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(time-ordering). A finite voltage applied to the reser-
voir is accounted for by the opposite-sign shift y of the
electrochemical potential of the edge, which can be intro-
duced by an additional non-equilibrium part of the La-
grangian Ly = /v/2n [ dxgo(z,t)0,V (z), where V(z)
depends on the modeled physics and in our case can be
chosen as follows. In the absence of tunneling, when the
evolution of the edge is governed by the retarded Green
function K (z,t) = m0(t)sgn(z — vt) of the operator K1
in Eq. (2), the Lagrangian Ly shifts ¢o and results in
its non-zero average

Bolest) = ~(voi2m) [t [ dyK(e - u,t- )0,V W)

satisfying

~0ify = v0uBo + VIV (z) — 5 S V(koa)l.  (3)

+

This equation shows that Ly describes two physical
processes. The first is current injection into the edge
due to V (z): Oypo + O0zjo = —vOV (z)/2m (chiral anom-
aly), where the chiral edge density pg = +/v8;Po/2m
is related to the current as jo = vpp. The second is
an additional shift of electrochemical potential of the
edge equal to [V(z) — >, V(£00)/2]. By choosing
V(z) = —p sgn(z — yx), with yx — o0, we reduce
the whole effect to the shift of the edge potential relative
to the reservoir by in general time-dependent potential
u(t) without producing any additional edge current at
x < yx. With this choice, in presence of tunneling, the
edge current caused by Ly is just the opposite of the
total tunneling current.

We start by considering the strong coupling limit of
a one-point contact (n = 1). The tunneling Lagrangian
reduces to

Ltunn = U1/27TOL COS(d)O(ZEl, t)/\/_ - ¢1)1

and in the limit U; — oo fixes the argument of the cos-
term at one of the cosine maxima, e.g., ¢o(z1,t)//V =
= ¢1(z1,t). Then, introducing the vector ¢(z,t) =
= [¢o,¢1]%, one can find its two-component average

3a,0) = (9lz, 1) as
#ot) =L [ Loty oue), @

where —2mig/w is the first column of the (2 x 2) ma-
trix Green function. The two components go 1(z) of the
function g do not depend on yx — oo for z < yx,
and satisfy the homogeneous differential equation (2)
at * # 1, and therefore can be written as go1 =
= ap1 + bo1exp[—iwz/v]. The coefficients a and b
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take different values ag ,,bf, for z smaller and larger
than z; (p denotes < or >, respectively). They are re-
lated among themselves by four conditions: contituinty
of go and gq; continuity of the current flow: /vbs +
+by = +/vby +b7; and maximum of the tunneling term:
go(z1) — v/vg1(z1) = 0. The solution g is a linear com-
bination of the four independent functions:

o =W, fy =evr v f o,

£ = 0(F (2 — 1)) (€2 = 1)[1, -7,

which are constructed to satisfy these conditions. Since
propagation of tunneling electrons are governed by the
free matrix Green function, which is diagonal and equal
to K x 1, where

2w |1

K@-yw)=-—|5+

we can find more restrictions on the coefficients: b5, =
0,af = —a7, af = 1/2—af/+/v. They uniquely specify
9(z,w) = [Vvfo /2= f7]/(1 +).

The currents follow then from Eq. (4) as

,0) = —do = 70l — ax)oou(t = [z = 1]/0)
The tunneling conductance is equal to Gy = 2voo/(1+v)
in agreement with the result of application [12] of the chi-
rally symmetric solution developed for a point scatterer
in TLL [5].

To extend this approach to the multi-channel con-
tact, we notice that although the statistical factors ££y&;
attributed to annihilation/creation of electrons in the
jth channel can not be ignored for more than one j
involved, they can be substituted [7] by the exponents
exp{=+i,/yn;} of the zero-energy bosonic fields satisfying
[7i,m;] = imsgn(¢ — j) with an odd integer + that spec-
ifies a phase branch of the fermionic statistics. These
fields can be readily constructed from the standard cre-
ation and annihilation operators of n — 1 independent
zero-energy bosonic modes. Since any non-vanishing
term of the perturbative expansion in Liy,, contains
+ exponents in pairs, a proper interchange cancels all
exponents and leaves only the statistical sign, the same
one would get directly from the Majorana fermions. The
substitution of the Majorana fermions by bosonic modes
transforms Ly, into:

Liunn = ZEJ = Z QZ—JQ COS{% - ¢j - \/’777]}
=1
(6)
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Equation (6) posseses the initial commutation symmetry
between the different parts of the tunneling Lagrangian,
since permutation of £; and L£; results in appearance of
the phase factors exp{+imsgn(i — j)(y — 1/v)} equal to
1 for any odd 4. As all U; in (6) tend to oo, all the
cosine arguments are simultaneously fixed. One can no-
tice, however, that this strong coupling limit depends on
the choice of . Indeed, in this limit, each £; can be ap-
proximated as —U;/(2ma)(¢o(1,t)/v/V — b5 — \/715)*
with sufficiently large U, the form that clearly puts v
(and not exponent of ) in the commutator between £;
and L£;. Moreover, if |z; — z;| > o for all ¢, j, there is
only one choice of v, ¥ = 1/v, which does not violate
the commutativity of limiting forms of £;. Relevance of
the different choices of v in the strong coupling limits
can be understood from their effect on the energy of the
system [14]. Here, however, we chose a more heuristic
physical argument. We prove that only the symmetric
strong coupling limit can be relevant, since all others
choices of v lead to solutions which do not satisfy the
condition of causality.

To show this, we calculate the current flow in the
strong coupling limit of Eq. (6) keeping v as a free
parameter. The calculation generalizes the one for the
single-point contact. The average ¢(z,t) in Eq. (4)
becomes the (n + 1)-component vector < [¢g,...,d; +
+ /M) |7 >, and —2mig/w is the first column of the
corresponding (n + 1) x (n + 1) matrix Green function.
The coefficients a;,b;,j = 1 + n take different values
a¥,bf for z smaller and larger than z;, where p denotes
< and > as before. The edge channel coefficients ag, bg
take (n + 1) different values, changing at each tunnel-
ing contact £ = z; in a way that relates them to aj,b;
by the four matching conditions derived above for the
single-contact case. We denote with af and b§ their val-
ues for z smaller than z, (p =<) and larger than
(g =>)- A set of 2(n + 1) independent vector-functions
satisfying all these conditions may be chosen as:

.fc_ = [\/;alvlala-'-]Ta fb_ :eiwz/vfc—’

.fj — (eiwz/v _ eiwz,-/v)ej,
£7 = (o] VI — )0l — z) (= #)/* — 1) +
j—1
+ el 1)/,
=1

where a vector e; has the only non-zero I-th component
equal to 1. Since all coefficients b;~ of the function g are
zero, it can be expanded in this basis as

g=scf + > sif7 (7)

=1

with (n + 1) unknown coefficients s;. The non-zero s;
lead to finite jumps of a; and b; at & = x;, and there-
fore, to the non-vanishing bj> = —sje_i“””i/ Y. Then, in
accordance with Eq. (4), the reservoir channel currents
arising at 2; can be found as j;(w, 2) = 2v/vpooed; 8(z —
— z;)e™®/v. Jumps of the coefficients a; and b; are
caused by the charge tunneling at the contact points z;,
with further propagation of charge governed by the free
retarded Green function. This means that this func-
tion determines both the coninuous parts of the a, b
coefficients and the relations between their discontinu-
ous parts and the coeflicients s;. The Green function is
(n+1) x (n+ 1) matrix, and can be written as K x 1 —
ymiC/w, where C is the antisymmetric matrix with all
elements above the diagonal, except the first row, equal
to 1. From this form one can find that b = 0 (the fact
already used in Eq. (7)), and that the coefficients a; are
related to s;. In particular: a5 = 1/2+ 377, 5,/2V/v,
ay = —8;/2+7/23,,;58n(j —p)sp. From comparison
of these relations to those obtained by direct substitution
of the f-vectors into Eq.(7) we get n equations:

1-— _
\/; + 8, = — i ? ! Siy
14+v 1+v
2s; : oz
=t Diepn [ - =,
(8)

where p =1+ (n — 1). Equations (8) allow us to deter-
mine all unknown coefficients s;.
For the two-point contact these equations reduce to:

2 . s
s1i=(1—-v+ ;[1 — e’“(zrm/v])ﬁ,
v¥2(1+ )
[ 9
82 2R ] ( )

1/2

R=1+v(l1—7) + 3(1 + 72) —(1- V,Y)eiw(mfzz)/v_

The part of the denominator R proportional to (1 — vy)
signals the appearence of an interference structure in
the currents. Substituting s12 (9) into jo(z,t) =
= — [dwe ™3, ,jj(w, ) one can see that, indeed,
the time dependence of charge propagation along the
edge exhibits multiple backscattering at zs and z;: A
charge wave started by the tunneling into the edge prop-
agates from the point zs to z; with the velocity v and
then instantly recoils back to z from z; with a finite
reflection coefficient proportional to (1 — vy). The for-
mal possibility of the charge propagation with infinite
velocity in the direction opposite to the edge chirality
is a combined effect of z-independent solutions of the
operator K~ from (2) and the matching conditions at
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the tunneling points. However, the instant “counter-
propagation” violates causality of the edge response to
external perturbations and can not appear in the final
physical results. This makes v = 1/v the only relevant
strong coupling limit for z; — 22 > a and clarifies the
consequences of breaking the commutational symmetry
of the initial tunneling Lagrangian for other choices of +.

When the two tunneling points practically coincide,
x1 — ¢2 < @, the Lagrangian symmetry is preserved
for any v. To make a physical choice of 7 in this case
we look at the tunneling conductance G = aom
that follows from Eq. (9) at zero frequency. If y =1
(corresponding to the minimal phase of the fermionic
statistics), then G = G;1. In the tunneling model (1)
with n = 2, this value of conductance represents the sit-
uation when the chiral dynamics of the edge does not
play any role, and the two reservoir channels are re-
duced to one tunneling mode. The choice of « can be
also confirmed by consideration of the tunneling energy
[14], which for #; ~ ®, is minimized by the smallest 7y
consistent with the statistics of the tunneling operators.
In particular, v = 0 gives the strong tunneling conduc-
tance in the model of an impurity scatterer in TLL of 2
spin-degenerate channels with the spin coupling constant
gs = 2 and the charge constant g, =1/(1/v +1/2).

For spatially separated tunneling points, the symme-
try preserving solution with v = 1/v reproduces equi-
libration between the reservoir and the edge. To see
this, we substitute v+ = 1/v into the first of Egs. (8)
and find that s, = —/¥/(1 + v) for any n. This
shows that the tunneling into the nth channel is de-
scribed by the one-point tunneling conductance G; for
all frequencies w, since it can not be affected by other
contacts down the edge. The zero-frequency solution
of the second of Eqs. (8) is: s,_1 = gsp,p = 2 + n,
with ¢ = (1 — v)/(1 + 7) equal to 1 — G1/ogv for
v = 1/v. It means that in the strong coupling limit
the tunneling current Aj out of the edge results in the
Aj/oov drop of the edge chemical potential. The zero-
frequency n point tunneling conductance follows from
by =2 8i/vVV =8,(1+v)(1—q")/2/v as oov(1 — q")
and saturates at vog, when n — oo and the outgoing
edge is equilibrated with the reservoir.

In conclusion, we have found the strong-coupling
solution of the model of tunneling between the multi-
mode Fermi-liquid reservoir and an edge of the prin-
cipal FQHL. The solution depends on the choice of the
statistical phase branch of different reservoir modes with
the physically relevant choice of the phase preserving
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the initial commutation symmetry of the tunneling La-
grangian. The statistical phase accounts for an even
number of fluxes absorbed/emitted by tunneling elec-
trons. The results explain the difference between trans-
port through a 1D FQHL edge and a TLL wire: the
two-terminal universal conductance of the edge is renor-
malized by the flux attachment, while direct electron-
electron interaction in the wire does not change its uni-
versal free-electron conductance.
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