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Dissymmetrical tunnelling in heavy fermion metals
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A tunnelling conductivity between a heavy fermion metal and a simple metallic point is considered. We
show that at low temperatures this conductivity can be noticeably dissymmetrical with respect to the change of
voltage bias. The dissymmetry can be observed in experiments on the heavy fermion metals whose electronic
system has undergone the fermion condensation quantum phase transition.

PACS: 71.10.Hf, 71.27.+a, 75.30.Cr

Understanding the unusual quantum critical prop-
erties of heavy-fermion (HF) metals at low tempera-
tures T remains challenging. It is a common belief that
quantum phase transitions developing in the HF met-
als at T = 0, which have ability to influence the finite
temperature properties, are responsible for the anom-
alous behavior. Experiments on the HF metals explore
mainly their thermodynamic properties which proved to
be quite different from that of ordinary metals described
by the Landau Fermi liquid (LFL) theory. In the LFL
theory, considered as the main instrument when inves-
tigating quantum many electron physics, the effective
mass M* of quasiparticle excitations controlling the den-
sity of states determines the thermodynamic properties
of electronic systems. It is possible to explain the ob-
served thermodynamic properties of the HF metals on
the basis of the fermion condensation quantum phase
transition (FCQPT) which allows the existence of the
Landau quasiparticles down to the lowest temperatures
[1, 2]. In contrast to the Landau quasiparticles, these
are characterized by the effective mass which strongly
depends on temperature T, applied magnetic field B and
the number density = of the heavy electron liquid of HF
metal. Thus, we come back again to the key role of
the density of state. It would be desirable to probe the
other properties of the heavy electron liquid such as the
probabilities of quasiparticle occupations which are not
directly linked to the density of states or to the behavior
of M*. Scanning tunnelling microscopy being sensitive
to both the density of states and the probabilities of qua-
siparticle occupations is an ideal technique for the study
of such effects at quantum level.

The tunnelling current I through the point con-
tact between two ordinary metals is proportional to the
driving voltage V and to the squared modulus of the
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quantum mechanical transition amplitude ¢ multiplied
by the difference N;(0)N2(0)(n1(p,T) — na(p,T)), see
e.g. [3]. Here n(p,T) is the quasiparticle distribution
function and N(0) is the density of states of the cor-
responding metal. On the other hand, the wave func-
tion calculated in the WKB approximation and defin-
ing t is proportional to (N1(0)N2(0))~*/2. As a re-
sult, the density of states is dropped out and the tun-
nelling current does not depend on N;(0)N2(0). Upon
taking into account that at 77 — 0 the distribution
n(p,T — 0) — np(p), where np(p) is the step func-
tion 6(p — pr) with pr being the Fermi momentum, one
can check that within the LFL theory the differential
tunnelling conductivity o4(V) = dI/dV is a symmet-
ric function of the voltage V. In fact, the symmetry of
a4(V) holds provided that so called particle-hole sym-
metry is preserved as it is within the LFL theory, but
the relation n(p,T — 0) — 8(p — pr) will do. There-
fore, the existence of the g4(V') symmetry is quite obvi-
ous and common in the case of metal-to-metal contacts
when these metals are in the normal state or in the su-
perconducting one.

In this letter we show that the situation can be dif-
ferent when one of the two metals is a HF metal whose
electronic system is represented by the heavy electron
liquid. When the heavy electron liquid has undergone
FCQPT its distribution function is no longer the step
function as soon as the temperature tends to zero [4].
As a result, both the differential tunnelling conductiv-
ity 04(V) and the tunnelling conductivity (V') become
dissymmetrical as a function of voltage V. While the
application of magnetic field destroying the non-Fermi
liquid behavior of the heavy electron liquid restores the
symimetry.

At first, we briefly describe the heavy electron lig-
uid with the fermion condensate (FC) [4—6]. When the
number density x of the liquid approaches some density
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zpco the effective mass diverges. Because the kinetic
energy near the Fermi surface is proportional to the in-
verse effective mass, FCQPT is triggered by the frus-
trated kinetic energy. Behind the critical point zr¢, the
quasiparticle distribution function represented by nr(p)
does not deliver the minimum to the Landau functional
E[n(p)]- As a result, at ¢ < zrc the quasiparticle
distribution is determined by the standard equation to
search the minimum of a functional [4]

%IE(P)ZM;MSPSP;‘- (1)
Equation (1) determines the quasiparticle distribution
function ng(p) which delivers the minimum value to the
ground state energy E. Being determined by Eq. (1),
the function nqo(p) does not coincide with the step func-
tion n(p) in the region (ps —p;), so that 0 < no(p) < 1,
while outside the region it coincides with ng(p). It fol-
lows from Eq. (1) that the single particle spectrum
is completely flat over the region. Such a state was
called the state with FC because quasiparticles located
in the region (py — p;) of momentum space are pinned
to the chemical potential . We note that the behav-
ior obtained as observed within exactly solvable mod-
els [7, 8] and represents a new state of Fermi liquid
[9]. We can conclude that the relevant order parame-
ter k(p) = 1/n0(P)(1 — no(p)) is the order parameter of
the superconducting state with the infinitely small value
of the superconducting gap A [5]. Thus this state can-
not exist at any finite temperatures and driven by the
parameter z: at £ > xpc the system is on the disor-
dered side of FCQPT; at ¢ = zrc, Eq. (1) possesses
the non-trivial solutions ng(p) with p; = pr = py; at
x < Tpc, the system is on the ordered side. At T > 0,
the quasiparticle distribution is given by

oty = {1 [CRD=TV g

where ¢(p, T) is the single-particle spectrum, or disper-
sion, of the quasiparticle excitations and y is the chem-
ical potential. Equation (2) can be recast as

1- n(pa T)
n(p,T)

As T — 0, the logarithm on the right hand side of Eq.
(3) is finite when p belongs to the region (py —p;), there-
fore T'ln(...) — 0, and we again arrive at Eq. (1). Near
the Fermi level the single particle spectrum can be ap-
proximated as

e, T) —u(T) =Tl (3)

:pF(p_pF). (4)

e(p~pr,T) — p e

It follows from Eq. (2) that n(p,T — 0) — ng(p) pro-
vided that M* is finite at 7" — 0. Thus at low tem-
peratures, the left hand side of Eq. (3) determines the
behavior of the right hand side. In contrast to this case,
the right hand side of Eq. (3) determines the behavior
of M* when FC is set in at the liquid. Indeed, it follows
from Eq. (1) that n(p,T — 0) = no(p). Therefore at
low temperatures, as seen from Eq. (3), the effective
mass diverges as [10]

M (T) =~ ppPL P (5)
At T <« Ty, Eq. (5) is valid and determines quasipar-
ticles with the energy z and characterized by the distri-
bution function no(p). Here Ty is the temperature at
which the influence of FCQPT vanishes [5]. The energy
z belongs to the interval

p—2T < z < p+2T. (6)

Now we turn to a consideration of the tunnelling cur-
rent at low temperatures which in the case of ordinary
metals is given by [3]

I(V) =2|t|2/[nF(z—u)—np(z—,u+V)] dz. (7)

We use an atomic system of units: e = m = A = 1,
where e and m are electron charge and mass, respec-
tively. Since temperatures are low we approximate the
distribution function of ordinary metal by the step func-
tion np. It follows from Eq. (7) that quasiparticles
with the energy 2z, p — V < z < p, contribute to the
current, while o4(V) ~ 2|t|? is a symmetrical function
of V. In the case of the heavy electron liquid with FC,
the tunnelling current are found to be of the form

w) :2/[n0(z—u) —np(z—p+ V) (8)

Here we have replaced the distribution function of or-
dinary metal by no being the solution of Eq. (1). We
have also taken units such that |t|*> = 1. Assume that V
satisfies the condition, |V| < 2T, while the current flows
from the HF metal to ordinary one. Quasiparticles of
the energy z, u — V < z, contribute to I(V), and the
differential conductivity o4(V) ~ 2no(z =~ p — V). If
the sign of the voltage is changed, the direction of the
current is also changed. In that case, quasiparticles of
the energy z, u+V > z, contribute to I(V'), and the dif-
ferential conductivity o4(—V) ~ 2(1 — no(z ~ p +V)).
The dissymmetrical part Agg(V) = (04(—V) — 04(V))
of the differential conductivity is of the form

Aog(V) =21 - (no(z —p=V)+ne(z —p=~-V)).
(9)
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It is worth noting that it follows from Eq. (9) that
Acy(V) = 0 if the HF metal in question is replaced
by an ordinary metal. Indeed, the effective mass is finite
at T — 0, then no(T — 0) —» np being given by Eq.
(2),and 1 —n(z—p=V) =n(z—p =~ -V). One
might say that the dissymmetrical part vanishes due to
the particle-hole symmetry. On the other hand, there are
no reasons to expect that (1—ng(z—p =~ V)—ne(z—p =
~ —V')) = 0. Thus, we are led to the conclusion that the
differential conductivity becomes a dissymmetrical func-
tion of the voltage. To estimate Ao 4(V'), we observe that
this is zero when V' = 0, because ng(p = pr) = 1/2 as
it should be and it follows from Eq. (3) as well. It is
seen from Eq. (9) that Ao 4(V) is an even function of V.
Therefore we can assume that at low values of the volt-
age V the dissymmetrical part behaves as Aoy (V) o V2.
Then, the natural scale to measure the voltage is 2T as
it is seen from Eq. (6). In fact, the dissymmetrical part
is to be proportional to (py — p;)/pr. As a result, we
obtain

V\* ps —pi
Aogg(V) ~¢ (ﬁ) o (10)

Here ¢ is a constant which is expected to be of the or-
der of unit. This constant can be evaluated by using
analytical solvable models. For example, calculations of
¢ within a simple model, when the Landau functional
E[n(p)] is of the form [4]

Eln(e)) = [ Frrpms + Vi [ nom)gas, )

give that ¢ ~ 1/2. It follows from Eq. (10) that when
V ~ 2T and FC occupies a noticeable part of the Fermi
volume, (p; — p;)/pr =~ 1, the dissymmetrical part be-
comes comparable with differential tunnelling conductiv-
ity, Aog(V) ~ Vy(V).

The dissymmetrical behavior of the tunnelling
conductivity can be observed in measurements on
the heavy fermion metals, for example, such as
YDbRh, (Sio.05Geo.05)2 or YbRhySis which are expected
to have undergone FCQPT. In that case, upon the
application of magnetic field B the effective mass is to
diverge as [1, 11]

M*(B) x (B — Beo)®. (12)

Here B, is the critical magnetic field which drives the
HF metal to its magnetic field tuned quantum critical
point. The value of the critical exponent @ = —1/2 is
in good agreement with experimental observations col-
lected on these metals [12, 13]. The measurements of
Ao (V) have to be carried out applying magnetic field
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B, at temperatures T < Ty. In the case of these met-
als, Ty is of the order of few Kelvin [11]. We note that
at sufficiently low temperatures, the application of mag-
netic field B > B, leads to the restoration of the Landau
Fermi liquid with M*(B) given by Eq. (12) [1, 11]. As
a result, the dissymmetrical behavior of the tunnelling
conductivity vanishes.

The dissymmetrical differential conductivity Acg(V)
can also be observed when the HF metal in question
goes from normal to superconducting. The reason is that
no(p) is again responsible for the dissymmetrical part of
04(V). This no(p) is not appreciably disturbed by the
pairing interaction which is relatively weak as compared
to the Landau interaction forming the distribution func-
tion ng(p) [10, 14]. In the case of superconductivity, we
have to take into account that the density of states,

N(B) ___|E] 13)
N(0) VEZ ZA?’

comes into the play because N, is zero in the gap,
that is when |E| < |A|. Here E is the quasiparticle
energy, while the normal state quasiparticle energy is
e —p =+vE?— A% Now we can arrange Eq. (9) for
the case of superconducting HF metal by multiplying the
right hand side of Eq. (9) by Ns/N(0) and replacing the
quasiparticle energy z — u by v E? — A2 with F being
represented by the voltage V. As a result, Eq. (10) can
be cast into the following form

(' V2 - A2)2 Py —Pi

Acy(V) ~ A[VVT a7 =
v1]? Py — Di
=4/|=] -1 L=, 14
[A] PF (14)

Note that the scale 2T entering Eq. (10) is replaced by
the scale A in Eq. (14). In the same way, as Eq. (10) is
valid up to V ~ 2T, Eq. (14) is valid up to V =~ 2|A|.
It is seen from Eq. (14) that the dissymmetrical part of
the differential tunnelling conductivity becomes as large
as the differential tunnelling conductivity at V' ~ 2|A|
provided that FC occupies a large part of the Fermi vol-
ume, (p; — p;)/pr =~ 1. In the case of a d-wave gap,
the right hand side of Eq. (14) has to be integrated over
the gap distribution. As a result, Aoy(V) is expected
to be finite even at V = A;, where A; is the maximum
value of the d-wave gap. A detailed consideration of the
superconducting case will be published elsewhere.

In summary, we have shown that the differential tun-
nelling conductivity between metallic point and an ordi-
nary metal which is commonly symmetric as a function
of the voltage becomes noticeably dissymmetrical when
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the ordinary metal is replaced by a HF metal the elec-
tronic system of which has undergone FCQPT. This dis-
symmetry can be observed when the HF metal is both
normal and superconducting. We have also discussed
possible experiments to study the dissymmetry.
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