For authors
Submission status

Archive (English)
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
VOLUME 81 (2005) | ISSUE 5 | PAGE 292
Pure spin photocurrents in low-dimensional structures
As is well known the absorption of circularly polarized light in semiconductors results in optical orientation of electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is accompanied by optical alignment of electron momenta. Here we show that the absorption of unpolarized light leads to generation of a pure spin current, although both the average electron spin and electric current vanish. We demonstrate this for direct interband and intersubband as well as indirect intraband (Drude-like) optical transitions in semiconductor quantum wells.