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The damping of single-particle degrees of freedom in strongly correlated two-dimensional Fermi systems
is analyzed. Suppression of the scattering amplitude due to the damping effects is shown to play a key role in
preserving the validity of the Landau-Migdal quasiparticle picture in a region of a phase transition, associated
with the divergence of the quasiparticle effective mass. The results of the analysis are applied to elucidate
the behavior of the conductivity o(T') of the two-dimensional dilute electron gas in the density region where it

undergoes a metal-insulator transition.
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A quantitative understanding of the damping of
single-particle excitations in a Fermi liquid (FL) is es-
sential to the determination of the resistivity, thermal
conductivity, and other kinetic properties of the system.
When the temperature dependence of the properties of
uncharged Fermi liquids is treated within Landau the-
ory, the decay rate () of single-particle excitations at
the relevant energies ¢ ~ T is given by [1]

¥(T) = W (M*)*T*. 1)

Here the effective mass M* specifies the FL single-
particle spectrum £(p) = e(p) — p = pr(p — pr)/M",
where €(p) = 0Eo/dn(p) and p is the chemical poten-
tial. The factor W is proportional to the square of the
scattering amplitude I', suitably averaged over spins and
momenta of incoming and outgoing particles.

Reliable experimental data on the modification of FL
properties under variation of controllable variables (e.g.,
the density n) exist only for two-dimensional (2D) Fermi
systems, notably liquid 3He and the electron gas. Lan-
dau theory adequately reproduces the behavior of these
data in a broad density region, except in the vicinity of
the critical density n, where the effective mass diverges,
and the spectrum £(p) becomes flat. This failure of FL
theory is conventionally attributed to a strong enhance-
ment of the dimensionless damping rate 7(T") = v(T')/T.
Close to the critical point, 7(T') allegedly exceeds unity,
invalidating the Landau-Migdal quasiparticle picture.

Here we shall demonstrate that in actuality the pa-
rameter r(7) remains rather small on both sides of the
phase transition associated with the divergence of the
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effective mass in the 2D system, and, consequently, that
the quasiparticle picture does apply. We then proceed
to study kinetic phenomena within the quasiparticle for-
malism, with particular attention to the metal-insulator
transition (MIT) occurring in the 2D electron gas in the
density region where the effective mass diverges [2—4].

Our analysis is based on the standard formula for
the damping rate [1, 5],

’Y(E) ~ = Z //W(p,pl,p’,p'l;s,gl,w)F(a,al,w,T)x
p1,p

x Im Gr(p1,—€1)ImGgr(p’,e — w) X
x Im Gr(p},w—e1)derdw, (2)

where p,p1 and p’,p] are respectively the incoming
and outgoing momentum pairs, and w=e—e'. The func-
tion W is given by the sum of absolute squares of
the scalar (s) and spin-dependent (a) components T'y
and T, of the scattering amplitude ' = T'y + ['yo10,,
while F(g,e1,w,T) = cosh(e/2T)[cosh(ey /2T) cosh((e—
— w)/2T) cosh((w—e1)/2T)]~! and Gg is the retarded
Green function. In what follows we assume that the de-
pendence of the mass operator X(p, €) on ¢ is not crucial,
and then

ImGr(p,e) = —7(e)/[(e = €@)* + ()] (3)

To begin, we note that in the collision integral (2), all
the quasiparticle energies must lie close to the Fermi sur-
face, so that [£(p)| < T, |€(p1)| < T, and [£(|p—q])| < T,
|€(|p1 + aq1])| < T, since, as we shall see, broadening of
the single-particle states is insignificant. In 2D, these
conditions are easily met, if (i) the momentum transfer
g = |p—p’| in the longitudinal particle-hole channel is
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small, i.e., ¢<q.(T)=T (dp/d€); ~TM*/pF, or equiva-
lently, if (ii) the momentum transfer g¢;=|p—pj| in the
transverse particle-hole channel is small, or (iii) the to-
tal momentum P=|p+p1| is close to zero. Outside these
regions, contributions to the collision integral appear to
be minor.

In dealing with small momentum transfers, we first
address the scalar component 'y of the scattering am-
plitude I', which obeys the standard equation [5]

Fs (q7 w) = f+fH0 (q7 w)l"s(q, (U) = [f_l_HO (q7 w)]_la
(4)
where f is the scalar part of the Landau interaction func-

tion. In FL theory, the polarization loop Il is an integral
over the product of two quasiparticle Green functions

G(p,e) = (e — &(p)) ', given by

o(g,w _2/5

in which dv = d?p/(2m)? is the volume element in 2D
momentum space, and n(p) = 1/[1 + exp(&(p)/T)]~*
the quasiparticle momentum distribution.

The value of Rellp is of order of N(0), the density
of states, proportional to M*. In a strongly correlated
FL obeying Landau theory, this quantity, whose sign de-
pends on the ratio w/g, is enhanced by the factor M* /M
compared to the corresponding ideal Fermi-gas value.
On the other hand at small w and ¢ > gmin = M*w/pr,
the imaginary part of Ily(g,w,T = 0), given by

w ( M* )2
mqpr+/1 — (M*w/qpr)?
has the same order as ReIly. Thus in strongly corre-
lated systems f~! can be neglected, and Eq. (4) reduces
to [Ts(q ~ ge,w ~ T')| = N~*(0) [6].

A similar situation applies for the spin-dependent
part ', of the scattering amplitude I', which satis-
fies the same equation (4) with the replacement f— f,,
where f, is the spin-dependent part of the Landau in-
teraction function. The 2D Fermi systems in ques-
tion do not exhibit ferromagnetism, in spite of the neg-
ative sign of f, derived from experimental data on
the spin susceptibility. This means that the Pomer-
anchuck stability condition [1] 147, N(0)>0 is not vi-
olated, implying that |f,N(0)|<1 holds even if the en-
hancement of the effective mass is large. The estimate
T4 (g~gc, w~T)|<N ~1(0) follows straightforwardly. In
the transverse particle-hole channel, where small mo-
mentum transfer corresponds to ¢ ~ 2pp, the situation
is evidently the same, so that in the collision term (2),
integration over ¢ can be restricted to the region of small
¢, and the result is doubled.

f )q_)wdv, (5)

ImIy(q,w, T =0) ~ —

(6)

In the third relevant momentum region where the
total momentum P is small, the scattering amplitude
(P — 0)] ~ —1/[N(0)1n P?] contains an additional
suppression factor 1/1n P? due to the BCS logarithmic
divergence of the particle-particle propagator [5]. There-
fore in what follows the respective contribution will be
neglected. Thus we conclude that a proper treatment of
damping effects in the strongly correlated system leads
to substantial suppression of the interaction factor W
governing the damping rate (2).

In the foregoing analysis, the momentum dependence
of the Landau interaction function F = f + f,0105 has
been neglected. Upon its inclusion, relation (4) is re-
placed by the integral equation

I'(nn;,q,w) = F(nng) +
+ Iy(q, w)/]—'(nn') ['(n'ng,q,w)dy'/2m, (7
with n = p/pr and n; = p1/pr. We now make use of

the smallness of the quantity 1/IIy ~ M/M* and rewrite
the scattering amplitude as

X (nny)/To(g,w)- (8)

Neglecting small corrections, Eq. (7) becomes

F(nn17 q, w) =

0=F(nm) + /f(nn') X(n'ny)dy'/2m. (9)

Inserting the expression (8) into the collision for-
mula (2), standard algebra [7] converts it to

e~T qe I I ( )
mllg(q,w
I
IHo(q, )[?
0 dmin
x Im Gr(p—q,e—w) dw qdq dp, (10)

where ImGRg(p, ) is given by Eq. (3). In the 2D di-
lute electron gas where X = 1, this result practically
coincides with that derived in Ref. [7]. As usual [8],
integration over angles in Eq. (10) is replaced by inte-
gration over energies £(I) where 1 = p — q , and after
some algebra we arrive at [7]
2 * *
S (37eg) a
[ My

The same estimate is valid for other strongly correlated
2D Fermi systems where the spectrum &(p) is specified
only by the effective mass.

The result (10) holds in the density region where the
effective mass M™ diverges, since in its derivation only
relation (8) has been employed. Here at relevant g, w, the
value of Rellg(g,w) turns out to be of order (dp/d€)¢~T.
As for Im Iy (g, w), its value is evaluated on the base of
the general formula [5]

v(T) ~
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€ —w €
Im ITo (g, w) _// [tanhW — tanh ﬁ] X

x Im Gr(p—q,e—w) Im Gr(p, ¢) %dv. (12)

Insertion of the explicit form of Im Gx and integration
over &£(p), £(1) along the same lines, as before, gives

2
PF E—w € dp

ImII ~ = h———tanh —| { —

m Iy (q,w) . /[tan 5T tan QT] (d£>Td6,

(13)

where the product (dp/d§)¢=.(dp/d€)¢=-—., has been re-
placed by (dp/ d{);. As a result, one finds

Tpr (dp>2
Imlly(q,w~T)| ~ —( =] . 14
fmllo(q. T ~ =27 (Z) - ()

Upon inserting this result into Eq. (10) we are led to

~or (i), (&), oo

Thus for evaluation of the damping rate (T in the
density region where M* diverges one needs to know
the spectrum £(p) close to the Fermi surface. To date,
microscopic calculations in this density region have been
performed only for the electron gas in 2D and 3D and
only at T = 0 [9—-11]. In Fig.1, we display results for
the spectrum £(p) of the 2D electron gas, calculated at

¥(T)

Fig.1. Single-particle spectrum &(p) of the homoge-
neous two-dimensional electron gas in units of €% =
= p%/2M, evaluated at T =0 for different values of 7, =
= (7n)"*?/ap, where ap is Bohr radius

T = 0 within a functional approach [12]. Close to the
Fermi surface, the electron spectrum &(p,n), given in
Fig.1, behaves as (p — pr)3. The leading FL term re-
emerges at finite temperatures [13], so that

£(p, Tynoo) = pr(p—pr) /M*(T,noo)+&3(p—pr)?,
(16)

with the effective mass [14] going like M*(T,n) ~
~ (dp/d¢) ~ T~2/3. With this result, the damping rate
2 TIlucema B #R3TD® ToM 81
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evaluated with the help of Eq. (15), becomes v (T, n) ~
~ T3 1n(Y%,/T).

The critical single-particle spectrum £(p,T=0,n,) ~
~ (p — pr)? is not universal. In a broader context, the
Landau state is known (e.g. from Refs. [15, 16]) to lose
its stability at a density n; for which a bifurcation point
P = pp emerges in equation

g(paT = O,Hb) = 0’ (17)

which ordinarily has only the single root p = pp. The
particular form £(p, T = 0,n4) ~ (p—pr)? corresponds
to the case in which the bifurcation point p, coincides
with pr. Obviously, in the general case one has p, # pr,
and the Landau state loses its stability before M™ be-
comes infinite. If the distance between p, and pp is
small, then the single-particle spectrum has the form

£(p, T =0,mp) ~ (p— pb)*(p — pF)- (18)

Suppose the temperature T lies below the maximum
value &, of |£(p,T = 0,n)| in the momentum interval
[pb, pr]. In this case, the dominating contributions to the
properties of interest come from the momentum region
adjacent to the bifurcation point p,, where according
to Eq. (18), (dp/d¢)T ~ T~'/2. From this result and
Eq. (15) one obtains y(T,np) ~ T%/21n(e%/T).

Beyond the critical density ny, Eq. (17) possesses
two additional roots pi<pp<p2. The single-particle
spectrum £pr(p, T=0,n), evaluated with the Landau
momentum distribution ngr(p)=0(pr—p), has the form

Ern(p,T=0,n)~ (p—p1)(p—p2)(p—pFr). (19)

If py#pr, the roots p1,ps are both located either in the
interior of the Fermi sphere or both outside it. If p,=pp,
then p;<pr<p,. In all these cases, the Landau occupa-
tion numbers np (p) are rearranged. As a rule, the Fermi
surface becomes multi-connected, but the quasiparticle
occupation numbers n(p) continue to take values 0 or
1. Hence the Landau-Migdal quasiparticle picture holds,
with n(£)=1 for £<0 and 0 otherwise. Consider first the
case p1<pa<pr. Then according to Eq. (19), the single-
particle states remain filled in the intervals p<p; and
p2<p<pr, while the states corresponding to p;<p<ps
are empty. We call this new phase the bubble phase.
If the bifurcation point pp coincides with the Fermi mo-
mentum pg, then p; <ppg and ps>pr, and the states with
p<p: and with pp<p<ps are occupied, while those for
p1<p<pr are empty. Again one deals with the bubble
phase.

At this point, we observe that the solution (19)
is not self-consistent, since the spectrum is evaluated
with npr(p) while the true Fermi surface is doubly-
connected. Following Ref. [15], we consider the feedback
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of the rearrangement of nyr(p) on the spectrum £(p) in
the bubble phase based on the Landau relation [5]

O¢e(p) / o
op M

where, as before, f is the scalar part of the Landau in-
teraction function and n(p)=[1+ exp(£(p)/T)]~! is the
quasiparticle momentum distribution. Solutions of this
nonlinear integral equation are known only in 3D Fermi
systems with phenomenological functions f depending
on g=|p—p1|- Despite of the diversity of forms assumed
for f(q), the resulting single-particle spectra and mo-
mentum distributions bear a close family resemblance.
Figs.2 and 3 display results from solution of Eq. (20) for

an pl)

dv U1, (20)

O/a
ND
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o
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Fig.2. Single-particle spectrum £(p) in units of 10™*¢%
(top panel), occupation numbers n(p) (middle panel), and
d¢/dp in units of 1072 v%, where v% = pp/M (bottom
panel), plotted versus p/pr at four line-type-coded tem-
peratures relevant to the bubble phase, in units of €%.
The model (21) is assumed with parameters 8 = 0.48 and
A = 3 No, where No = pFM/ﬂ'2

the function

f(a) = A[((a/2pF)* = 1)* + B°].

Let us briefly summarize how solutions of Eq. (20)
evolve under variation of 7. When the bubble range

(21)

pa—p; is small, then heating to T~Tpr = (ps—p1)*/M
results in its dissolution (see Fig.2). With further in-
crease of T, the function £(p) becomes smoother, and in
the region of a new critical temperature T'z, a flat portion
£~0 appears in the spectrum over an interval [p;, ps] sur-
rounding the Fermi momentum pg, as shown in the left
panel of Fig.3. Since &(p)=¢(p)—p and €(p)=6Eo/dn(p),
the equality £&=0 can be rewritten as a variational con-
dition [17]

0Ey ep<
Jn(p) - l'l‘7 pt p pf’

with By = 3 egn(p) + 3 X5 5, (P — P1) n(p) n(p1)
and €)=p®/2M. The solution ng(p) of Eq. (20), or
equivalently of Eq. (22), is a continuous function of
p with a nonzero derivative dng/dp (see Fig.3, top-
right panel). The set of single-particle states with
£(p)=0 is called the fermion condensate (FC), since the
corresponding density of states p(¢) contains a Bose-
liquid-like term 7nd(e). The dimensionless constant
n~(ps—pi)/pr is naturally identified as a characteris-
tic parameter of the FC phase.

(22)

SO . -3 o 10
| S E
pl pf = ----2-10 h —~
0.02F e -10° Jo5%
b -~ 5-10 :
s Ty,
s yt
0.02 . ; : =
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08 10 128, p o =
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Fig.3. Single-particle spectrum £(p) in units of €% at the
critical temperature Tz=3-10"* ¢% (left panel), occupation
numbers n(p) (right-top panel), and £(p)/T (right-bottom
panel), plotted versus p/pr at five line-type-coded temper-
atures relevant to the phase with a FC, in units of €%. The
model (21) is assumed

It has been demonstrated [18] that the FC “plateau”
in £(p) has a small slope, evaluated by inserting no(p)
into the above Fermi-Dirac formula for n(£) to yield

g(paT > TZ) Tln (p) y Pi <p< Dy (23)

o (P)

As indicated in the bottom-right panel of Fig.3, at
T > Tz the ratio £(p)/T is indeed a T-independent
function of p in the FC region. The presence of this
flat portion of £(p) ~ T is a signature of the phenom-
enon called fermion condensation [17-19]. The width
Ilucema B AT Tom 81
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&(ps) — &(ps) = &7 — & of the FC “band” appears to be
of order T, almost independently of 7 > Nmin ~ 1072,
Thus at 1 > Nmin the FC group velocity is estimated as

(M

T
~—, pi<p<Dp;s. 24
dp )T mwr 4 (24)

As shown in Ref. [10], the effective mass diverges
before attaining the critical point rcpw for the charge-
density-wave instability. Microscopic calculations con-
firm this assertion: M™* diverges at rs=r~7, while
the condensate of the charge-density waves occurs at
rcpw ~10. Thus in the interval 7., <7, <rcpw one deals
with the homogeneous ground state having a FC. In this
case, the damping rate of single particle excitations is
evaluated on the base of Egs. (15) and (24) that yields

Y(T) ~nTIn(1/n). (25)

Thus, as long as the FC density remains small, the di-
mensionless damping rate r(T') = (T)/T proves to be
small as well, so the presence of the FC does not de-
stroy the quasiparticle picture. It is worth noting that
at greater energies ¢ > T, the damping y(¢) grows as
/€ with increasing € [20]. Thus at these energies, the
ratio y(e)/e exceeds unity, and the quasiparticle picture
fails independently of the 5 value.

Let us now apply our results to the elucidation of
behavior of the conductivity of the dilute 2D electron
gas from data obtained in samples with silicon inversion
layers [2, 4. We focus our attention at low densities
where the 2D electron gas undergoes a metal-insulator
transition (MIT), as signaled by a change in sign of the
derivative dp(T — 0)/dT. In high-quality samples, the
sign change occurs at the density namt ~ 0.9-10*em—2.
On the metallic side of the MIT, this derivative has pos-
itive sign, while on the insulating side, it is negative, the
separatrix pyrT(T) ~ 3h/e? ~ 75k between the two
phases being almost horizontal [2, 4].

At these densities, the electron-electron interaction,
first taken into account within perturbation theory in
Ref. [21], becomes a “play maker”. A crucial point
is that close to the critical density namgr, the effective
mass M*(n) diverges [2, 4]. In this situation, a stan-
dard method of treatment of kinetic phenomena on the
base of the Boltzmann equation fails. Therefore we em-
ploy a different approach where the conductivity o(T) is
expressed in terms of the imaginary part of the polar-
ization operator II(j,w — 0,T') through [5]

o(T) ~— lin}] w  ImTI(j,w, T). (26)
w—>
It provides contributions of two different types, namely

from (i) imaginary parts of the quasiparticle Green func-
tions and (ii) imaginary parts of the scattering ampli-
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tudes. As a rule, both these contributions provide the
same T-dependence of ¢(T"). E.g. this is seen from ho-
mogeneous systems without impurities where the two
types of contributions cancel each other to ensure van-
ishing of the resistivity due to momentum conservation.
(In solids, the resistivity p(T') differs from 0 due to um-
clapp processes). Such cancellation allows one to find
out the T-dependence of the resistivity in the critical
density region, where the spectrum £(p) becomes flat
by retaining in Eq. (26) only contributions coming from
Im Gg. Thereby the calculations are simplified consid-
erably, and the expression for Im IT acquires the form

ImII(j,w—0,T) // (tanh——tanh ﬁ) X

x | T (§, w=0)*Im Ggr(p, e—w)Im Gg(p, €)dedv, (27)

Here, 7 is the vertex part, whose static limit is given
by [5] T(J,w = 0) = edé(p)/Ip. Upon inserting the ex-
plicit form for Im G into Eqgs. (27) and (26), the latter

becomes [22]
/ / d&/dp)z 72(e) de dv
2T[( +72(g)]2 cosh?®(e/2T)
Converting, as before, the momentum integration to an
integration over ¢ and taking into account that the over-

whelming contributions to this integral come from the
vicinity of the point £ = €, we arrive at

ne’ (d¢/dp)
P_F/ 9T ~(€) cosh?(€/2T) a6, (29)

where n = p%/2m. Remembering that in the region of
the critical density of 2D electron gas, where the effec-
tive mass diverges, one has (T) ~ T*/31In(e%/T), and
then Eq. (29) gives us

o(T) ~ T~2/3/In(e%/T). (30)

Since do(T — 0)/dT < 0, this point is situated on the
metallic side of the MIT. Beyond this density, i.e. at
oo < Ts < TcDW, and greater but still very low temper-
atures T' ~ Tz, we pass the point of fermion condensa-
tion. The FC contribution to o(T') is evaluated with the
help of Egs. (25) and (24), yielding

orc(T) = oo€® /n°In(1/n), (31)

where o¢ is a T-independent constant.

(28)

o(T) =2r

At r; > rcpw, the spontaneous generation of the
condensate of the charge density waves occurs, and the
ground state of 2D electron gas becomes nonhomoge-
neous. Consequently, a gap in the single-particle spec-
trum opens that results in exponential falling of the con-
ductivity o(T) at T — 0, implying that one deals with
the insulating side of the MIT. Thus the separatrix, di-

2*
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viding the metallic and insulating domains, is situated in
the FC region, and according to Eq. (31), it is a straight
line. This result is in agreement with available experi-
mental data [2—4].

Flattening of the single-particle spectrum entails the
change of the Hall coefficient Ry = 04y./02, [23]. In
homogeneous matter at H — 0, 0, = 0/3, with o given
by Eq. (29), while 04, is recast to

_ & [ () (g
=g [ (5) S @

where n (&) is the Fermi-Dirac distribution function. Far
from the critical density n,, these formulas lead to the
standard result Ry = 1/nec. The critical spectrum
of 2D electron gas has the form £(p,neo,T = 0) ~
~ (p — pr)®, and with the help of Egs. (29), (32), one
then finds Ry = K/nec where

[ 24/3e*[1 + e#]~2dz ~15
([ 22/3e#]1 +e/’]*2dz)2 -
(33)

We see that at the critical density, the effective volume
of the Fermi sphere considerably shrinks. It is impor-
tant that even quite close to the critical point where
the effective mass still remains finite, the value K =1
holds, so that at low T, the critical behavior (33) of K
emerges abruptly. On the other hand, imposition of sta-
tic magnetic field H on the system at the critical density
N renders the effective mass finite [13, 14] and hence,
one can expect the abrupt change of the Hall coefficient
Ry (neo,T — 0,H) as a function of H.

In conclusion, we have analyzed damping effects in
the strongly correlated 2D Fermi liquid in a density re-
gion where the effective mass diverges. We have demon-
strated that in spite of the enhancement of the dimen-
sionless constants specifying the strength of the effective
interaction between quasiparticles, the Landau-Migdal
quasiparticle picture is applicable on both sides of the
phase transition associated with the divergence of the
effective mass. The results of the analysis have been ap-
plied to the interaction-driven metal-insulator transition
in the 2D electron gas, demonstrating that the separatrix
between the metallic and insulating regions is a straight
line.

K(ne,T—0,H—0) =
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