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The current phase relation in Josephson tunnel junctions
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The J(p) relation in SFIFS, SNINS and SIS tunnel junctions is studied. The method for analytical solu-
tion of linearized Usadel equations has been developed and applied to these structures. It is shown that the
Josephson current across the structure has the sum of sin ¢ and sin 2y components. Two different physical
mechanisms are responsible for the sign of sin 2. The first one is the depairing by current which contributes
positively to the sin 2¢ term, while the second one is the finite transparency of SF or SN interfaces which pro-

vides the negative contribution. In SFIFS junctions, where the first harmonic vanishes at ”0”

- 77" transition,

the calculated second harmonic fully determines the J(y) curve.

PACS: 74.50.+r, 74.80.Dm, 75.30.Et

It is well known that tunnel SIS Josephson junctions
have sinusoidal current-phase relation, while with the de-
crease of the barrier transparency deviations from sin ¢
take place (see [1, 2] for the review). The sign of second
harmonic is important for many applications, in par-
ticular in junctions with a more complex structure like
SNINS or SFIFS, where N is a normal metal and F is
a weak metallic ferromagnet [2—4]. To analyze this
problem selfconsistently, one should go beyond the ap-
proximation which is usually used and is called “Rigid
boundary conditions” (RBC) .

The RBC method is an effective tool extensively
used earlier for theoretical study of the proximity and
Josephson effects [1, 2] . This method is based on the as-
sumption that all nonlinear and nonequlibrium effects in
a Josephson structure are located in a “weak link” con-
necting two superconducting electrodes. The back in-
fluence of these effects on superconductivity in the elec-
trodes is neglected. The RBC are valid if a junction
has the constriction geometry. The quantitative criteria
for the validity of RBC for planar SIS tunnel junctions,
SS'S sandwiches and variable thickness bridges were
studied only numerically for some parameter ranges [2].
The main technical difficulty in formulating the analyt-
ical criteria of RBC validity is to find the solution of
equations describing the perturbation of superconduct-
ing state in S electrodes. In this paper we will attack
this problem by finding the solution of linearized Usadel
equations [5]. We will also use this solution to formu-
late the corrections to previous results obtained in RBC
approximation.
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The junction model. Let us consider the struc-
ture of SFIFS type, where for simplicity the parameters
of the SF bilayers are equal to each other. We assume
that the S layers are bulk and that the dirty limit con-
ditions are fulfilled in the S and F metals. We assume
further that F metals are weak monodomain ferromag-
nets with zero electron—phonon interaction constant and
the F'S interfaces are not magnetically active. We will
restrict ourselves to the case of parallel orientation of
the exchange fields H in the ferromagnets. The results
obtained for SFIFS junctions cross over to SNINS and
SIS in corresponding limits.

Under the above assumptions the problem is reduced
to the solution of the one-dimensional Usadel equations
[5, 6] in S- and F-layers and matching these solutions by
the appropriate boundary conditions [7]. We choose the
z axis perpendicular to the plane of the interfaces with
the origin at the central barrier I and introduce indexes
L (left), R (right) and I for description the materials and
interfaces parameters of the SFIFS structure located on
the left and right sides from the central barrier and at
this central barrier, respectively.

The Usadel functions G and F' obey the normaliza-
tion condition G2 + F,F*_, = 1, which allows the fol-
lowing parametrization in terms of the new function ®:

w ®
Go= -, Fo= . (1)

VO ,8* )] NOTER I S

The quantity @ = w + iH corresponds to the general
case when the exchange field H is present. However, in
the S layers H = 0 and we have simply &w = w.
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The Usadel equations [5] in the S and F layers have
the form

7T, O 0
&29@% [ 2S£§S:| - ®5=-A, (2)
T, O 0
%E% [ %‘%‘I)F] —®r =0, (3)

where G, = @/,/&? + ®,%* ,, ¥ = w+ iH in a fer-

romagnet (H is the exchange field), @ = w in S and
N metals, T, and A are the critical temperature and
the pair potential in a superconductor, w = #T'(2n + 1)
are the Matsubara frequencies and {g(r) are the coher-
ence lengths related to the diffusion constants Dg(r) as

&s(r) = /Ds(r)/27T,. The pair potential satisfies the
self-consistency equations

o]

Alnf + T z

w=—00

A—-Gg®

DT TSTSINY o, (4)

|w]
In the case of SFIFS tunnel junction in quasi-one

dimensional geometry the boundary conditions at the

junction plane (z = 0) read

G%. 0 Gy R 0
&r Br %QF,L =¢ on 02 (5)
&rGrL,R O ®rr

P
'I>LR—:|:GFR<~ ~F’L),
wWR wr,
(6)

YBI oL Oz

with
vBr = RnAr/prér,

where the indices L and R refer to the left- and right-
hand side of the junction, respectively, Ry and Aj are
the normal resistance and the area of FIF interface.

The boundary conditions at the SF interfaces (z =
= FdF) have the form [7]

£sG%,, 0 ErGy O

Ta_z Sk =7 o am‘I)F k> (7)

G 0 P ®
:t"/BgF.,J—q)F’k = GS,k (ﬂ — ﬁ) , (8)

wy Oz w Wi,

with vy = RpAB/prér, 7 =psés/prér,

where Rp and Apg are the resistance and the area of the
SF interfaces; pg(r) is the resistivity of the S (F) layer;
k = L, R. Both of these conditions ensure continuity of
the supercurrent.

We will also suppose that due to low transparency of
the FIF interface the Josephson current is much smaller
that the depairing current of superconducting electrodes

so that the suppression of superconductivity in the inte-
rior of the electrodes can be neglected and at ¢ — o0

|®5,k| = Ao, (9)

where A is the magnitude of bulk order parameter.
The limit of small F layer thickness. In this

limit
D
dr < min (&r, \/ ﬁ) (10)

the gradients in (3) are small and in the second approx-
imation on dp/&F the solution of (3) has the form

T .'172 GkAk
Spr=A,+By,— + —————
Fk k+ k&? + 2 ﬂTcﬁerF,k’
—y (11)
2 _ Wgr

MY )

Integration constants A and B in (11) can be found from
boundary conditions at ¢ = 0
G¥r G¥r GriGFR (ﬂ B ﬂ) (12)

——B; = —=——Br =
wr WR YBI WR WL

and at x = *+dF,

Grpr
A, = A — 13
k Ok T8 Gs + WryBm /7T, (13)
WRr,rPs kG s,k dr
Aoy = LESETSE =52 (14
O (Gsk + WeyBm /7Te) TEM =75 &r (14)

Expression (13) valid if yg < 7ygr. Substitution of (11)
and (13) into the boundary condition at z = +dF leads
to

2

GFk w
<I> + k Y “UFk g, (15
855 Bk = A/MGgs’k T +ye kG K,  (15)
where vy = 7ydp/ér and reduce boundary problem

(2)—(9) to the solution of equations (2), (4) in the S layers
with the boundary conditions (9), (15). At H = 0 and
(vB1d/€éF) > 1 expression (15) reduces to the known
result for SN bilayer. [8]

The linearized Usadel equations. Following
RBC approximation we will start with the assumption
that the suppression of superconductivity in S layer is
weak and the solution of Usadel equations in the super-
conductor has the form

Psp(w) =Dox +P1r, A=Aor+A1x,  (16)
w
Gsr=Go+Grp, Go= ﬁ, (17)
Gro = Go [Aﬁ,k‘l’l,k + Ao,k‘I’I,k]
LT T2 L A2 2 ’
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where Ag , = Agexp{tip/2 +iUz/{s}, ¢ is order pa-
rameter phase difference across the barrier and the coef-
ficient U describes the linear growth of phase difference

due to the supercurrent in the electrodes. Corrections
to Ag and @5 are supposed to be small
[A1 k] K Ao,  [Prr| K Ag. (18)

The approximation is valid if the right hand side of
Eq.(15) is also small, so that

§s <I>1 & = Ex(w), (19)
Zo(w) = + wG ro,k Aok wG%o 1 B
Sk Y™ WTCG(Z) &jk G(Q] ) (20)
wﬂk

Grok = ——at

where ¥, = (Go + Gryem/7T:), and |E(w)| < Ao.
From the structure of the linearized Usadel equations
and the boundary conditions (19) it follows that there are
first order corrections only to the magnitudes © and A;
of functions ®; and Aj j respectively, while the phases
of all of these functions coincide with those of Ag k. In
this case

‘-I}1,k = Oexp {:I:z%} , Aig=Ajexp {:I:z%} (21)
and due to the symmetry of the structure we have
I =1,

Wwr =wr =w, Groxr = Gro,

A, 5Go

kE _ P _ wWbo
Ag —Coexp{izZ}, Co R (22)
= Gro w %)
—'k( ) G 9 I::t"y Tc COos §+
+i (7 — )sin g] (23)

To write (23), we also used the fact that in the first order
with respect to |2(w)| the magnitudes of functions ®g x
in (13) equal to Ag and that Gs = Go.

Substituting (16), (21) into (2), (3), we arrive at the
following boundary problem for ©® and A,

7T,

\/W 6:62

P ote=a, (24)

_ T i L«)@Go

Ay +7rT Z Ay =0
w=—00 w=—00
(25)
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0 = E L = P
§S%®(:i:dp) = [Reuk(w) cos 5 + ImEj (w) sin 5](, |
26

0(%00) = 0. (27)

Due to the symmetry of the problem it is enough to solve
the Eqs. (24)-(27) only in one of the electrodes, namely,
for z > dp. Using the equation for Ay(T)

In — — =
n +7rTw_Z_oo WT“,_ZOO *2+A2

and the symmetry relation O(w) = O(—w) we can
rewrite the selfconsistency equation in the form

A EZ—WTZ

w>0

(28)

7 Tw?

+A2 556 2 (29)

Sy=nT ) = A2 AT (30)
w>0

The solution of (24), (29) is

ZtSQexp QT 9y
Q>0 6

0= i 59\/w2+A2
050 1/w2+A2—7l'Tc as

r — dF
exp(—qq & )s

(31)

where the coeflicients dg and gq satisfy the equation

Sy = aT i w? % T (32)
2 = (w? + A2)3/2 /2 + A2 — 7T.g3 ’
i gado _ _AcP(p,w) (33)
&S0 (Vw? + AZ — 7T q3) Vw? + A2
and P(p,w) = ReEg(w) cos(p/2) + ImEg(w) sin(p/2).

Multiplying Eq.(33) on w?(w? + A2)~3/2, summing both
sides of this equation on w and making use of (32) one
can transform (33) into the system of equations for the
coefficients o which yield

_ 7TTCA092QQ
0o = —71'T722(Qz T A%)zA(Q,go), (34)
where
A(Q, ) = |YMK1(Q) + le(Q)(l —cosp)|,

YBI
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y) VPP+@2+p (35)

K1(Q) =

ﬂ'TcGo 2(])2 + q2)
pGo + (Hq + pQ)ypur /nTe
Ko(Q) =
2(®) Go(p* + ¢?) ’
H Q
=2 R
q=2YBMm 7rTc( T, )s (36)
QZ _ Hz

Q

(=T.)
Here Q = nT(2m + 1) are the Matsubara frequencies.
As a result, the solution of the boundary problem
(24)—(27) has the form

7T, A2 qq exp(—gq T4
— —T E 0 ( €5 )

22 92 +A2) A(Qi 90)’

(38)

Q>0

T A Q%qaA(Q, ) exp(— QszgF)

(02 + A2)2(1 — nT.¢3Go/w)

WTZ

Q>0
(39)

In particular, at £ = dr from (38) and (39) we have

% = —YMEF1 — lZm(l — cos ), (40)

Ao YBI
TI'TCQ2qQK1(Q)
Y1 =0T , (41
w1 =T D S A A TudGofe) (D
WTCQ2QQK2(Q)
Yo =aT . (42
F2 =7 QE>0 22(92 + A(z])2(1 - chano/w) ( )

To calculate the sums (41), (42) one needs to know
the expression for the coefficients go which can be in gen-
eral obtained from numerical solution of Eq.(32). Since
the main contribution to the sums (41), (42) comes from
large (2, the asymptotic behavior of g at large Q can be
used

V2 + A2 a1 nT? I V2 + A2

7T, ’ QT. 7T

@ =a
(43)

The developed method is valid if the following con-
dition is fulfilled
} << 1,

(44)

H? + (nT.)°
("/M + l) max{1,In| — + (rTe) >
181 it (Vonrs e} 1)

B X YBI-
Therefore for the function ®g in Eq.(14) we get
Bk = (Ao + O(dr)) exp {Fip/2}, (45)
and substituting (45) into (13) we finally obtain

Ak — AO 4 UJ,LLCO

O(dr)| Coexp {+ip/2} F

vB WGoGFrolo . ¢
F2l— ————————sin — 46
YBI w? Sty (46)

p =1+ Gowypm/nT, (47)

From the structure of coefficients A R,I, We see that the
corrections to the supercurrent across the SFIFS tunnel
junction leads not only to the reduction of the critical
current of the structure, but also to changes in the J;(y)
relation.

The J,(p) relation. Using the the standard ex-
pression for the supercurrent [11], the boundary condi-
tion (6) and Eq.(46) we can write down the supercurrent
I across the SFIFS junction in the form

= (Jo + J11) sin<p + Ji1o 8in 2(p, (48)
where
AT S AR &Go
= e <o <& = — 4
J() eRNw;oo‘;z'i'CgAg, CO w19’ (9)

AZC? GwCouE N
@+ A ™M A T

2 —~
B WG ro v @wCou ]
B e Sral 50
YBr ¥ ver Ay T? (50)
T > AZC3
Jiz =  eRn w;w (@2 + C2A2)? X
2
% I:’)’_B GF()AOCO _ ’)/ wwaFQ:I . (51)
YBI 9 vBr Ao

Expression (49) has been obtained previously in [9—
11]. The p—independent correction to it, J11, is negative
and describes the suppression of sin ¢ component of the
supercurrent. The first term in Eq.(50) proportional to
vm takes into account the suppression of superconduc-
tivity in S electrodes due to proximity with thin F layer.
The last two terms proportional to ’YE} describe the sup-
pression of superconductivity by the current across the
junction. The larger vp and < the weaker is the super-
conductivity induced into F layer and the stronger is the
influence of this effect.
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The sign of the second harmonic Jy2 depends on the
relation between vp and v. At yg = 0 it is positive and
J(yp) relation (48) has a maximum at ¢ = ppax < 7/2.
Such a shift was predicted earlier near 7, for SIS tunnel
junctions and is due to the suppression of superconduc-
tivity near the barrier by a supercurrent [12]. Increase of
~vp leads to additional phase shifts at both SF interfaces
and provides the mechanism for the shift of the pmnax into
the region ¢ > /2. As a result, at sufficiently large vg
the amplitude Ji2 changes its sign and @pax shifts to
¢ > m/2. Such a competition between suppression by a
supercurrent and by proximity effect was first analyzed
in the SNS junctions [13] at T &~ T.. This fact is in the
full agreement with the results of numerical calculations
summarized in [2].

The physical reason for different signs of Ji5 can be
easily understood if we consider the two cases separately.
Suppose first that g is finite. In this case the SFIFS
structure may be considered as a system of three Joseph-
son junctions in series as shown schematically in Fig.1.
For rough estimates one can assume that the phase x

Tocy p(@/2—7)
/ \

S F I F S

—p/2 X X ¢/2

Ioc ‘/71131 sin2y
Fig.1. The phase distribution in a SFIFS junction

of @5 does not depend on w. Demanding the equality
of the currents across FIF and FS interfaces and taking
into account that Ic « v5; < Ic1 o< 5" for x we will
have

I
X=9/2- —Csin2x.
Icq

Substituting this x into the expression for the supercur-
rent across FIF interface, we get

I
I = Iosin(p — IC_CI sinp) = Io(sing — % sin 2¢p).

Therefore with increasing yp the phase partly jumps at
the F'S interfaces leading to a continuous crossover from
the Josephson effect lumped at = 0 to the phase drop
IIucema B AATD® Tom 81
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distributed at |z| < dp. In a full agreement with the
theory of double barrier devices [2] this crossover re-
sults in appearance of second harmonic in Jg(p) with
negative sign which provides maximum Jgs(p) achieved
at ¢ > /2.

If v = 0, the structure is always lumped at z = 0
and the main effect is the suppression of superconduc-
tivity by supercurrent in the vicinity of FIF interface as
shown schematically in Fig.2. The resulting contribution

de - .2
_ésa oy gy Apsin“@/2 A,

e
\{\K’

Ax)

FS

I y; Ay(1 - y}]g] sin” ¢/2)sing
Fig.2. Depairing by current near the tunnel barrier
to the full current is
I, x 'yg} (AO - {52—2) sin @ o«

sin? hd

x Lo 1- sin . (52)
YBI YBI

It follows directly from (52) that the amplitude of the
second harmonic is positive.

The competition of the above two mechanisms of
I(p) deformation is clearly seen from Eq. (51).

The general expressions (49)—(51) can be simplified
in several limiting cases.

In the symmetric SNINS tunnel junctions H = 0 in
both electrodes and in the first approximation from (49)
the earlier result from [8] is reproduced

2T & Ag
Jo= eRy 2 (W? + A2)0(w)’

w>0

O(w) = (1 + 2GowyBM /7T, + (wyBM/TT:)?)
while (50) and (51) reduce to

47T
Jip = ——= [wm + By ize] :
eRy YBI YBI
2T
T = - [—7’3 - L 26],
eRy |vBI YBI
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where

= AoGo¥uZpy
B2 W A0

= AZ9?
s = 9
° ; (W2 + A2)05/2(w)’

s~ GoAgOuZps
%o = 2 (0t + A3)0%(w)

oo A4
z:7 = g )
DI

and Go = w//w? + A2

In the limit v — 1, H,ym,vB,YyBM — 0 the SFIFS
structure transforms into SIS tunnel junction. In this
case

Co=1, Aprr = [Ao + O(dr)|exp {*ip/2},

9 7T, Ao qq sin® 29
- aT
O(dr) ’YBI7r Z 232(92+A2) (1-7T.g3Go/w)’

and for the supercurrent I in the first approximation we
have the well known result of Ambegakaokar-Baratoff
theory [14]

27T A2
I = E
efn 5w + A7 e

Using (32) for J11 and Jis it is easy to get

AO A
11 = R 3, J12 = eR 3 (53)

and the full current across the tunnel junctions is

Ao

I=
eRN

Ao AoX
[ ta h— 223]sin<p+ 973 sin 2.

enn

The critical current achieves at phase difference .

—%t nh™? Ao

_7T
L S 2T’

and equals to

Ao Ao
I~ nh =2 — 2%,
eRy [ tanh o 3]

and at T — 0 the I(p) simplifies to

Ag w192 <WTC)3/2

eRn2  vBr \ Ao )

At T ~ T, Eqgs.(53) transform to the result obtained
in [12].

Conclusions. In summary, we have studied the
current-phase relations Jg(p) in SFIFS, SNINS and SIS
junctions in the regime when the second harmonic of
Js(p) is not small. To solve this problem selfconsis-
tently, we have developed the analytical method for solv-
ing the linearized Usadel equations. This solution de-
scribes a weak suppression of superconducting state in a
superconductor caused either by proximity with normal
or ferromagnetic material or by a current in composite
SN or SF proximity systems. The method is rather gen-
eral and can be applied to a wide spectrum of proximity
problems.

We have demonstrate that the full current across the
structure (48) consists of the sum sin ¢ and sin 2¢ com-
ponents and have calculated the amplitudes (Jo + J11)
and Ji5 of these components. In SIS and SNINS struc-
tures the corrections Ji; and Ji2 to the previously cal-
culated critical current Jo are small. The J(p) curve
is slightly deformed so that the maximum value of the
supercurrent achieved at phase difference ¢. which can
be smaller or larger 7/2 for positive and negative sign of
J1a respectively. In SFIFS junctions Jy = 0 at the point
of the transition from ”0” to ”7” state. It means that in
this case the calculated values J;; and J;» determine the
J(p) curve. Since the amplitudes J;; and Jy2 may have
comparable magnitude, the J(p) measured experimen-
tally can be essentially different from sin ¢. The validity
of the developed approach is determined by inequalities
(44) and vp < 7vp1- These conditions also determine the
validity of rigid boundary conditions in the models [2]
describing the properties of SFIFS, SNINS and SIS tun-
nel junctions.
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