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Simplicial vs. continuum string theory and loop equations
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We derive loop equations in a scalar matrix field theory. We discuss their solutions in terms of simplicial
string theory — the theory describing embeddings of two-dimensional simplicial complexes into the space-time
of the matrix field theory. This relation between the loop equations and the simplicial string theory gives
further arguments that favor one of the statements of the paper hep-th/0407018. The statement is that there
is an equivalence between the partition function of the simplicial string theory and the functional integral in a
continuum string theory — the theory describing embeddings of smooth two-dimensional world-sheets into the

space-time of the matrix field theory in question.

PACS: 11.10.—z, 11.15.Bt, 11.25.Tq

1. In this short note we give further arguments sup-
porting the observations made in [1]. There we consider
matrix scalar field theory in the D—dimensional Euclid-
ian space:

A 2 A2
z :/D@(m)m(m) exp {—/dDmN’I‘r [% ‘a@‘ +

2,2 .
+m7‘<1>‘ +§<I>3+c.c.]}, (1)

where p=1,...,D, & is N x N matrix field in the ad-
joint representation of U (V) group: &%, 4,5 =1,...,N.
We choose this theory due to its simplicity (for our pur-
poses) in comparison with gauge and matrix theories
with more involved potentials. The problems of this the-
ory due to the sign indefiniteness of its potential are irrel-
evant for our considerations: We consider this functional
integral as a formal series expansion over A. All our con-
siderations can be easily generalized to the other matrix
scalar and gauge theories. In fact, one can always make
a theory with cubic interactions out of a theory with
more involved interactions via insertions of integrations
over additional fields into the functional integral.

The functional integral (1) can be transformed into
the summation over the closed two-dimensional simpli-
cial complexes? [1]:
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2)Similar transformation has been done in [2] to establish a re-
lation between the no-gravity limit of the Ponzano—-Regge theory
and a non-commutative field theory.
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where Cg,,.,(V, g) are some combinatoric constants de-
fined in [1]; F is the number of faces of the fat Feynman
graph; L is the number of links; V is the number of
vertices and g is the genus of the Feynman diagram.

The summation in eq.(2) is taken over the graphs
which are dual to the Feynman diagrams [1]. These
graphs represent triangulations of Riemann surfaces. In
[1] we interpret the expression (2) as the partition func-
tion of the closed simplicial string theory — the theory de-
scribing embeddings of two-dimensional simplicial com-
plexes into the space-time of the matrix field theory. In
the context a’s are related to the components of the two-
dimensional metric [1].

Furthermore, in [1] we argue that there is no need
to take a continuum limit in eq.(2): There should be a
continuum string theory®) whose functional integral is
equal to eq.(2). In this paper we give further arguments
supporting this idea. We propose equations which are
solved via the simplicial open string theory “functional

; (2)

graph

3)I.e. the theory describing embeddings of the smooth two-
dimensional world-sheets into the space-time of the matrix field
theory in question.
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integral”. On the other hand these equations have a
natural interpretation as constraint equations in a two-
dimensional field theory containing gravity.

To present the idea of our argument, let us consider
the case of the relativistic particle. The path integral for
the latter solves the following equation [3]:

(-A+m?) G(x, x') =§(x —x). (3)

One can also obtain a simplicial integral solution to this
equation [1] as follows. The solution of eq.(3) can be
represented as:

D i X—X _
G(x, x') /d p Pl )m_

— - de eip(x—x)e—log$ —
A/

oo 2 2L
/deelp(x x)[ P j;m ] —

1 -1k o (!
L=0
L 1

% H / del (C_P + ey _e—gez> , (4)
0

where A is the cutoff. If we drop all terms containing
exp {—A e/2} in eq.(4), we obtain the divergent expres-
sion which can be represented in the form [1]:
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In each member of the sum here yo = %, yr1; = x’ and
Cp are easily computable constants dependent on L.

The formula (5) contains the summation over the
one-dimensional geometries. In fact, it contains the
summation over all discretizations/triangulations (L) of
the world-trajectory and the integration over all one-
dimensional distances (e’s) between the vertices (y’s).
The summation over the embeddings of the simplicial
complexes is presented by the summation over the num-
ber of vertices (L) and the integration over all their pos-
sible positions, i.e. over — y’s.

Thus, eq.(5) is, so to say, a simplicial particle the-
ory “path integral” which formally solves eq.(3), but de-
mands a regularization. At the same time eq.(4) suggests
a natural regularization of the simplicial partition func-
tion (5) and rigorously relates it to the differential eq.(3).

Moreover, as we see one does not have to take a contin-
uum limit in eq.(5) and this “simplicial path integral”
after the regularization is equivalent to the regularized
standard path integral for the relativistic particle.

Below we argue that the same story should happen
in the case of simplicial string theory and, possibly, for
the higher dimensional simplicial brane theories. To ob-
tain a proper theory of the latter kind one should both
sum over the (multi-dimensional) triangulations and in-
tegrate over the sizes of the links: this gives the summa-
tion over all internal geometries, which in usual func-
tional integrals is represented by the integration over all
metrics divided by the volume of the group of diffeomor-
phisms.

2. Once the relation between eq.(1) and eq.(2) is es-
tablished, one of the natural generalizations of eq.(3) to
two-dimensions can be represented by the loop equations
[4] in the matrix field theory. In this section we derive
the loop equations for the theory (1) and discuss their
obvious solution in terms of the simplicial open string
theory. Such a string theory follows from the expansion
in Feynman diagrams of an analog of the Wilson’s loop
correlation function [1]. As we will see, these loop equa-
tions have a natural interpretation as constrained equa-
tions on the functional integral for a continuum string
theory. Obviously the latter should be equivalent to the
simplicial string theory partition function in the same
way as it happens in the case of the relativistic particle.

Thus, we would like to consider Ward type identities
for the correlation function of the Wilson loop operator:

W(C) = ﬁpexp{—ﬁds\/ﬂ—(g)@[m(s)]}, (6)

where C is a loop in the space-time, which is represented
by the map z(s). However, one can obtain closed? loop
equations for such an operator only in the theory with
the Lagrangian [5]:

L=%Tr‘aﬂ~i>‘2 (7)

or with the Lagrangians following from the reduction of
the Yang—Mills theory. To obtain closed loop equations
for the theory (1) we suggest to consider the loop oper-
ator as follows:
W(C,e) = TrP exp {—f dse(s) & [m(s)]} .8
c
As well there is the operator W (C,e) which depends on

® and the same e — real-valued square root of the one-
dimensional internal metric on the interval of s.

4)Means equations which include no other kinds of operators
except the loop ones.
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Let us define the loop space Laplace operator as

in [3]:

s+0 62
3x2 /ds 0z, (s) 0z, (s')” )

§—

Then it is straightforward to see that [3, 4]:
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Similarly one has the complex conjugate equation. To
find the right hand side of this expression (after the av-
eraging over all field configurations), let us consider the
equality®):
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From this we obtain:

((-072°(y) + m® @°(y) + A [2°]" (v)) x
xexp{—fédse(s)@[m(s)] >=
P

:_< dse(s) 8y — (s)] P x

X exp —/dte(t)&z[m(t)] 7% %

X expd — / dte(t)  [2(t)] > (12)

Here the left hand side appears from the variation over
®° of the exponent of the action and the right hand side
appears from the variation of W(C, e).

Hence, we obtain:

5 Here & = T and T% a=1,..,
U(N).

N? are the generators of
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and the complex conjugate equation. In eq.(13) we use:
ZT“ T, = 8inOim (14)

and C2%, = Cyry U Cyypr. The right hand side of eq.(13)
does not vanish if the contour CZ?, (which is just C
with two designated points z = z(s) and ' = z(s')) has
self-intersection at z = z' [3, 4].

The solution of eq.(13) via the expansion in powers of
A of the correlation function (W (C, e)) looks as follows:
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where Cgraph(E,V, g) are some combinatoric constants
and in the exponent on the right hand side among the
y’s there are y(s1),-..,y(sg) over which the integration
is not taken and they are sitting on the contour C'. The
first sum on the right hand side is taken over their num-
ber. The summation over “graph” in eq.(15) means the
summation over the Feynman diagram contributions to
the correlation function in question. Accordingly, V is
the number of interaction vertices; L is the number of
propagators; y’s are positions of the vertices; p’s are mo-
menta running over the propagators; a’s are Schwinger
parameters and g is the genus of the fat Feynman dia-
gram.

, (15)
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Performing the transformation of [1], we obtain:
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Here wl(s), s =1,...,2g+1 are the values on the /-th link
of the closed (but not exact) one-forms on the genus g
simplicial complex with one boundary. These simplicial
complexes are defined by the dual graphs to the Feyn-
man diagrams: Now the sum in eq.16 is taken over these
dual graphs rather than the Feynman diagrams them-
selves. Cg,py, is different from Cyrapn by a factor of the
determinant of some matrix [1].

The main difference between eq.(13) and eq.(3) is
that the former one is the non-linear equation. But drop-
ping the right hand side of eq.(13) (and puting the func-
tional §-function instead), we obtain the standard linear
Wheeler-DeWitt equation in a two-dimensional gravity
theory coupled to the matter fields (z). Both loop and
Wheeler-DeWitt equations are not well defined due to
their divergences [3]. As the result, the solution of such
equations in terms of two-dimensional functional inte-
gral is not known.

Note that the UV divergences of the quantum field
theory in eq.(1) acquire a clear interpretation in the sim-
plicial string theory description (16). These divergences
are just due to the boundaries in the space of all metrics,
i.e. when some of the a’s vanish, which corresponds to
the situations in which some of the triangles in the dual
graph to the Feynman diagram degenerate into links [1].
The natural regularization of eq.(16) is analogous to

the one presented in eq.(4) for the case of particle. It
is nothing but the regularization which follows from the
insertion of the integration over the ghost Pauli-Villars
fields into the functional integral of the matrix field the-
ory. The addition of these fields sets an obvious regu-
larization of the loop equations, but one needs a renor-
malized version of these equations rather than just their
regularization [3]. This is the subject for another work
(see [6] for the attempts of understanding this point).

3. We have considered nonstandard loop variables
in the scalar matrix field theory. These loop variables
depend on both loops in the target space and internal
one-dimensional metrics and obey loop equations. The
equations represent a non-linear generalization of the
Wheeler-DeWitt equations in a two-dimensional grav-
ity theory interacting with matter. There is an obvious
solution to these equations in terms of the partition func-
tion of an open simplicial string theory. We argue that
there should be a continuum string theory solution to
the same equations which is exactly equivalent to the
simplicial one. The only obstacle which can appear in
formulating such a continuum string theory is that for
generic values of A it can happen that its functional inte-
gral will contain an integration measure for the metrics
which does not follow from a local norm.
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