Pis’'ma v ZhETF, vol. 81, iss. 11, pp. 693 — 698

© 2005 June 10

Formation of Bose-Einstein condensate structures in laser fields:

semiclassical approach and electrodynamic effects

F. Cattani, D. Anderson, A. V. Kim*, M. Lisak

Department of Electromagnetics, Chalmers University of Technology, SE-412 96 Géteborg, Sweden

+ Institute of Applied Physics RAS, 603950 Nizhny Novgorod, Russia

Submitted 7 April 2005

The formation of Bose-Einstein condensate (BEC) structures via electromagnetically induced interactions
is analyzed within a semiclassical approach where an improved interaction potential is obtained. This analysis
shows how the laser-induced forces can lead to self-confinement of the ground state even with a homogeneous
field. It furthermore indicates that the vector character of the field can be crucially important, since it can
change the type of nonlinearity, thus strongly modifying the BEC structures.
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Background. Recently, the nonlinear behaviour of
Bose-Einstein condensates (BEC) in laser fields has be-
come a subject of growing attention (see, e.g., [1-3]and
references therein), inspired both by new perspectives
in the study of BEC in optical lattices and by new pos-
sibilities of having a BEC self-localized in space via
laser-induced interactions when the atoms are released
from a trap. Since most of the experiments on Bose-
Einstein condensation have been accurately described
by the mean-field method based on the Gross-Pitaevskii
equation (GPE) [4], extensions of this equation are also
used for describing BEC in optical fields. However, so
far the potential energy of the interaction has been mod-
elled as the single-particle ponderomotive potential in
problems of optical lattices or as a sum of the laser-
induced dipole-dipole interatomic potentials, see for ex-
ample [3] or [5].

The purpose of the present work is to provide a gen-
eral approach for describing the laser-induced interac-
tion of Bose-Einstein condensates where the difference
between the local field (the microscopic field acting on
an atom) and the macroscopic field (the field averaged
over a volume containing many atoms) is taken into ac-
count. Of particular interest is to investigate the for-
mation of BEC structures created via such interactions
where the nature and stability of a Bose-condensed state
are influenced by the self-induced dipole-dipole interac-
tion forces. This analysis provides us with qualitatively
new regimes for the formation of condensate structures.
To this purpose, we consider an extension of the GPE
by using a semiclassical approach for describing the self-
induced forces (striction forces) in the laser-condensate
interaction. For a large number of atoms, this descrip-
tion can be significantly simplified by using the macro-
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scopic electrodynamics approach. This analysis also
shows that the vector character of the field can be cru-
cially important. For instance, for BEC structures well-
localized within a laser wavelength along the field, varia-
tions of the dielectric permittivity strongly influence the
microscopic field, thus qualitatively changing the type of
nonlinearity.

Semiclassical approach. The dipole-dipole interac-
tions of a BEC in laser fields as well as in static fields
have recently been investigated within the framework
of quantum theory [5—8]. For models of different ef-
fective interaction potentials, simple cases of density
modulations and atomic beam guiding have been in-
vestigated. The full quantum description is based on
the exact Hamiltonian, but for the conditions of inter-
est in laser-condensate interactions and for large laser
detunings from the atomic resonance, a semi-classical
model can be derived where the atoms are described by
a Schrodinger equation with the interaction term given
by the self-induced force calculated in the framework
of macroscopic electrodynamics. For a high frequency
field, the averaged induced force per volume, f, in trans-
parent media can be obtained as shown in [9] by time
averaging of the corresponding electrostriction force in
a static electric field [10]. For a zero-temperature, dilute
BEC in a far-off resonant laser field Re[E exp(—iwt)],
we have (see Ref. [9])

n Oe
f=—_—V|E’—~ 1
1527 [ 5] g
where n is the condensate atom density, and ¢ is the di-
electric permittivity of the condensate gas. To describe

the striction forces, we have to find a suitable model for
€. Since we assume a large number of condensate par-
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ticles in a volume A3 () is the laser wavelength), the
dielectric constant can be modelled in the local-field ap-
proach where, for atomic gases, the difference between
the local field acting on an atom and the macroscopic
field formed by the induced dipoles of the surrounding
particles is taken into account, see, for example, [11].
This gives

e=l4— ol @)

where o = —d?/RA is the atomic polarizability at the
laser frequency, with A = w — w, being the detuning
from the nearest atomic resonance frequency w,, and d
is the dipole matrix element of the resonant transition.
By substituting Eq.(2) into Eq. (1) we obtain the total

force acting on a single atom F = f/n = —VV; where
the corresponding potential energy is given by
a E?
o B -

4 (1 - (47/3)an)’

For a single particle (n=0), Eq.(3) describes the pon-
deromotive force in an inhomogeneous laser beam. How-
ever, even in a homogeneous laser field, the force does
not vanish since it may also be generated by the pres-
ence of density gradients. As is easily seen, in the low
density limit (or in the weak dipole interaction limit,
4wan/3 < 1), the striction force originating from the
induced microscopic dipole-dipole interatomic forces is
attractive force, independent of the sign of the frequency
detuning, i.e., V3 o —a?n. Although at a first glance
the low density approximation seems to describe most
of the experiments, the structural dynamics and the sub-
sequent density modulations will, in fact, depend on the
character of the nonlinearity, i.e., on the sign of the de-
tuning.

Self-confined BEC. We consider a condensate with
repulsive interaction (the s-wave scattering length a >
> 0). The above result implies that the dynamics of the
BEC atoms in a laser field can be described by a gen-
eralized GPE for the condensate wave function ¥(r,t)

[4]:
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where Hy is the linear single-particle Schrodinger Hamil-
tonian, the wave function ¥ is normalized as N =
= [ |¥|*dr with N denoting the total number of atoms,
so that the gas density is n = |¥|?, Uy = 4wh%a/m and
m is the atom mass. In Eq.(4), the laser-induced nonlin-
earity originates from the difference between the macro-
scopic and local fields in a condensate gas and bears a

local character since, for fixed orientation and separation
of the dipoles, the interaction energy for a large number
of atoms in a physical volume averaged over the relative
positions of the dipoles vanishes, see, e.g., [11]. This is
consistent with the approach used in [6], where a phe-
nomenological dipole-dipole interaction is assumed to be
in the form of a contact potential, rather than with the
model used in [3, 5], where the main contribution is due
to the long range interaction. As a first approximation
in the low density limit, the self-confining dynamics does
not depend on the sign of @ and when the interparticle
interaction is dominated by the dipole-dipole forces, i.e.,
for laser intensities such that

3U0 o 6h4aA2

E? > E2 = 0 - 2ha%
Bl th ™ 9?2 md4

(5)
the dynamics may result in a density modulation of
the condensate ground state and even a tendency to-
wards a subsequent collapse-like evolution that usually
takes place only in the presence of attractive s-wave
interactions [12, 13]. However, the question of what
kind of structures the condensate will actually realize,
must be answered by using the exact Eq.(4) and, in
fact, the evolution will essentially depend on the sign
of the laser frequency detuning. In order to clarify this
question, we consider the case of a constant (homoge-
neous) laser field E = const, and restrict the analy-
sis to the steady-state regime where we can assume
¥(r,t) = ¢(r)exp(—iEt/h). Without external poten-
tial Eq.(4) reduces to

B2 a E|?
- V2 + Uollfz - = |4 | D) d) = E"/Ja (6)
2m 4 (1- ?wm/,z)

where V2 is the Laplace operator and E is the ground
state energy of the Bose condensate which depends also
on the total number of condensate atoms. It is ob-
vious that, due to the focusing nature of the induced
dipole-dipole interaction nonlinearity, there are continu-
ous families of symmetrical localized solutions of Eq.(6)
for any space dimensionality. However, since the valid-
ity of a model with a constant field, as we will see below,
depends on the orientation of the density gradients, we
will here pay particular attention to 3D axisymmetrical
and 1D cases.

In 1D, Eq.(6) is similar to that which describes par-
ticle motion in the effective potential V,(v) = —Upyp* +
+(a/2)|E[*¢?/(1— (47 /3)ap?) + 2E4>. From this anal-
ogy, all possible condensate distributions can be inferred
from the phase portraits of the system. This is shown
in Fig.1 for the different parameters for which localized
solutions exist. The main bifurcation inequality when a
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Fig.1. Phase portrait for Eq.(6) for different regimes when
the self-confinement of the ground state can occur (sym-
metrical with respect to the axis ¢'): (a) @ > 0, E < —E,,
for any number of condensate atoms if |E|> > E}, and oth-
erwise for N > N, (b) @ > 0, E > —E. and |E|* < E},,
() a <0, |[E? > EZ; and (d) a < 0, |E|? < E2,. Dash
line indicates the singularity point in the potential energy

Ve(9?)

localized BEC can occur is given by Eq.(5). If the laser
intensity exceeds this threshold, self-confined states can
occur for any number of atoms as seen in Fig.1a,c where
the separatrix curve passing through zero corresponds
to localized solutions. For weak nonlinearity, the bound
state has the shape of the Schrodinger soliton, ¥(z) ~

~ 1/2E/8U,sech(V 2mEzx/h) (where E = —E—E, > 0,
E. = a|lE|?/4, § = (|E|*/E3,) — 1 > 0) with the to-
\/2E/m(2h/8U,) decreasing
with decreasing E. In fact, the qualitative behaviour
of the localized solutions does not depend on the sign
of a. However, as we will see below, the sign of « is
important for the problem of stability which originates
from the singularity in the interaction potential for red
frequency detuning (o > 0) where the condensate distri-
butions become more narrow for increasing number of
atoms in contrast to the case of blue detuning (a < 0)
where the condensate distributions become more flat due
to the saturation behaviour of the nonlinearity.

If the inequality given by Eq.(5) is not fulfilled,
self-bound states of the BEC do not exist for a < 0.
However, for red detuning (o > 0) topologically the
same phase portrait takes place if the number of con-
densate atoms exceeds some critical value (see Fig.1a).
This critical number of atoms corresponds to the case
when the ground energy of the condensate is equal to
E = —E,, which can be found by direct integration of
Eq.(6). In a case that may be verified experimentally,

tal number of atoms N =
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when laser intensities are near the threshold level, i.e.,
0<é=1-(E?/E%) << 1, the ground state distrib-
ution is self-organized to the form

| 36 1
Pu(z) = mmy (7)

where v = (0/h)+/3mUy/4ma. This solution contains
a critical number of atoms, N,, which does not depend

on §:
N, = / 02 (z)dz ~ | > (8)
* 4mUpa

In a 3D geometry, N, plays the role of the atom density
surface density.

It is interesting to note that Eq.(6) not only has
purely localized solutions (¢p — 0 at £ — +o00) but
also describes localized solutions on a homogeneous con-
densate background, as a dark soliton corresponding to
the separatrix curve from the equilibrium point A to
—A (Fig.1b,c,d) and as a hump (compressed) field in
the condensate (closed separatrix around the equilibrium
point B in Fig.1b). If the dark soliton in Fig.1d can be
considered as a generalized version of the well-known so-
lution observed also experimentally (see, for instance, in
[14]), the others represent new solutions indicating that
new types of collective excitations can be produced in
laser-condensate interactions.

The important role of the sign of a is clearly seen
for axisymmetric BEC structures that occur if the total
number of atoms exceed a critical number, which can
easily be calculated by expanding the potential function
in the low density limit where the ground state solution
is the so called Townes mode [12, 15]. Eq.(6) admits
localized solutions for any sign of the detuning. How-
ever, it is obvious that for positive a, such solutions are
unstable against collapse. This is in accordance with
the stability criterion of Kolokolov and Vakhitov [16].
The ground state is unstable when the total number of
atoms is an increasing function of the energy 6N /6E > 0
as seen in Fig.2a. Otherwise, it is stable (Fig.2b) due
to the saturation-type nonlinearity. Thus, for a > 0,
condensates tend to collapse and can produce even a
condensed matter state. It should be noted that one-
dimensional states may also be unstable against collapse
due to the singularity in the potential energy (see, for
example, [17]) and therefore quasi-1D condensed matter
structures can also be formed.

Thus, for experimental realization of the predicted
self-confined effects it is sufficient that the laser inten-
sity exceeds the threshold given by Eq.(5). For 8"Rb
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Fig.2. Dependence of the total number of atoms in the
self-confined BEC structure on the ground state energy
at |E[*> > E2, for positive (a) and negative (b) a. All
quantities are dimensionless

and 2®Na atoms, and linearly polarized light with a fre-
quency detuning of 0.95 GHz from the 28y, —2 Py/»
atomic resonance (irrespective of the sign of the detun-
ing), the threshold intensity is equal to 130 mW/cm?
and 900 mW /cm?, respectively. However, it should be
noted that below this threshold the density modulation
can also occur for red detuning (a > 0) only if the total
number of atoms exceeds the critical value N = N.,S,
where S is the transverse cross section (see Eq.(8)).
For the same parameters, N, is equal to 4.7 - 10! cm—2
and 7 - 10" ecm=2. For example, for § = 10 x 10um
N = 4.7-10°% and 7 - 10° for Rb and Na condensates,
respectively.

Notice that, in the model we have presented, all ab-
sorption processes were neglected, a legitimate assump-
tion provided that the laser detuning A is so large com-
pared with the spontaneous emission rate v, (e.g., for
Na v,/2m ~ 10 MHz), that the imaginary part of the di-
electric permittivity can be considered negligibly small.
In this case the effect of resonance absorption on the
BEC density modulations is small but will define the
life time of these structures. However, even if the laser
detuning was chosen to be large enough, A > ~,, reso-
nance absorption could come into play due to photoas-
sociation which can be an effective mechanism of exci-
tation of the high-lying vibrational levels of an excited
molecule created from two atoms during a collisional
process [18]. However, as was recently experimentally
shown in almost pure condensates, a photoassociation
spectrum is quite narrow [19, 20]. At the laser intensi-
ties presented in the above estimates, the photoassocia-
tion linewidth would be approximately twice the atomic
linewidth corresponding to the low intensity limit where
it is independent of intensity. For higher intensities the
linewidth is broadened (and also shifted) linearly with
the intensity up to a maximum of 60 MHz at 1kW/cm?
for Na. We note that this intensity value is three orders
of magnitude higher than that in our estimates. Thus,

our estimates show that by choosing appropriate laser
detunings we are able to avoid the photoassociation ab-
sorption or even to use it for effectively creating highly
vibrationally-excited molecules by employing the con-
sidered BEC density modulations.

Electrodynamic effects and 3D limits of small-scaled
structures. So far, we have considered the problem of
BEC structures in a given laser field. However, in
general, Eq.(4) must be considered self-consistently to-
gether with Maxwell’s equations, which determine the
dynamics of the electromagnetic radiation. The conden-
sate density modulations may affect the electromagnetic
field propagation and, as a consequence, the self consis-
tent interaction may exhibit features, which differs from
what was predicted in the first part of this work. Thus,
we will concentrate now on the possible back-effects of
BEC density modulations on the electromagnetic field.
In particular, we will show that, if the density gradient
is along the electric field, the corresponding variations
in the dielectric permittivity can strongly influence the
microscopic field and may even change the character of
the nonlinear effects.

To gain insight into this effect, we consider the struc-
tural dynamics of a condensate that is well localized
within a laser wavelength. In this case we can use as
a governing equation for the field [11]:

V- (¢E) = 0. (9)

The evolution of condensates in electromagnetic fields
within the framework of Eqgs.(2), (4) and (9) may be re-
ferred to as quasielectrostatic BEC dynamics. First of
all, the characteristic scales of the density modulations
can be obtained from the problem of structural stabil-
ity of the background state against small perturbations.
We assume the background state to be homogeneous:
¥ = Ugexp(—iEgt/h), E = Ee, and the relation be-
tween ¥, Fy, & is given by the algebraic equation
Ey = Ug¥2 — a€2/4(1 — 4ma®3/3)%. The latter also de-
fines the equilibrium points in Fig.1. We introduce the
electrostatic potential, E = —V¢, which implies that
Eq.(9) becomes eV2p + (Ve - Vy) = 0. By lineariz-
ing the basic set of equations for small perturbations,
i.e. writing ¥ = [¥ +uy(r,t) + iv1(r, t)] exp(—iEot/h),
p = =&y + @i1(r,t) where u1, v1, 1 are assumed to
be real functions, we arrive at a set of linear equations.
For solutions of the form uy, vy, @1 o e't~¢T, the growth
rate is given by

= " X
V2m
1/2
47a?E2 (1 — 3K2 /K26 252
T 0( Hy/,ZEO)—2U0 @g_hﬁ ,(10)
3(1— (47/3)a®3)? 2m
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where k? = k2 + k2 + k2 and & = 1+ (87/3)a¥}. The
growth rate reaches its maximum at £, = 0, i.e., for con-
densate density modulations extended along the electric
field and well localized in the perpendicular direction.

The most striking new feature of the self consistent
interaction between the condensate modulation and the
electromagnetic radiation is that modulations along the
field are strongly suppressed whereas in the first part
of this work, fully localized structures were found when
only the condensate dynamics was included. The nature
of such a behaviour can be understood by considering
a simplified model which assumes 1D density variations
in a specific geometry. More specifically, we assume the
laser field to be homogeneous (on the scale of the wave-
length) and the density gradients to be along the direc-
tion of the field. Thus the model equation for the BEC
dynamics is rewritten by coupling it to the governing
equation for the electromagnetic radiation. This model
is built to describe exactly the conditions under which
we have found from Eq.(10) that no localized BEC struc-
ture along the field direction should be formed. While
the result of Eq.(10) comes from the general model of
Eqgs.(4) and (9), we will now focus on a simpler model
describing only the 1D case of density modulations par-
allel to the field. The aim is to understand how the
nonlinear interaction is modified in this case and why
localized structures are suppressed.

For linearly polarized light, Eq.(9) implies that the
macroscopic field generated inside the condensate is
given by

Er
E(z,t) = ———~ 11
@ = g (11)
where E;, = Epe, is the laser field. Substituting

Eq.(11), with the dielectric permittivity given by Eq.(2),
into Eq.(3), we arrive at the following governing equa-
tion

T E2
in%Y — o0 + U - & L .
ot 4 (14 (87/3)alT[?)

(12)

which models the simplified case of density modulations
parallel to the laser electric field, so that it differs from
the general model equation (4) for the simplifying as-
sumptions between Eq.(11). Eq.(12) is thus intended
to shed light on the more general result obtained from
the full model and contained in Eq.(10) on the effects
of density gradients parallel to the vector electric field.
As is easily seen in the low density limit, the interac-
tion energy is V¥ ~ 87a?E2|¥|2/3 > 0 which leads
to a defocusing nonlinearity as for repulsive interaction
between particles, independently of the sign of a.
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Thus, Eq.(12) shows the effects of density modu-
lations along the direction of the field. These density
modulations induce variations of the dielectric constant
which then affect the electromagnetic field.

It turns out that this effect is of the same order of
magnitude as that due to the induced dipole-dipole inter-
action. In fact, it is strong enough to give rise to a differ-
ent type of nonlinearity. Apart from a family of localized
dark soliton-like solutions which can be excited as collec-
tive excitations, an analysis of the steady-state solutions
of Eq.(12) shows that there are no localized hump-like
solutions for the case of density modulations along the
electric field. This means that, in the general 3D case,
along the direction of the laser field, self-localized states
can be generated only over a length scale comparable to
or larger than the laser wavelength. However, as follows
from Eq.(4) and (10), in any other direction the focus-
ing nature of the nonlinearity can lead to the formation
of more narrow density distributions. Consequently the
evolution of a BEC, which is affected by laser-induced
interactions in a linearly polarized field, may result in a
self-organized cigar-shaped bound state extended along
the field.

In conclusion, we have presented an analysis of
the density modulations of a BEC produced via laser-
induced forces and we have shown that by modifying
well-controllable parameters, such as the laser inten-
sity, frequency detuning and field polarization, differ-
ent self-confined condensate structures can be accom-
plished. Furthermore we have investigated the self-
consistent back-reaction of atom density modulations on
the electromagnetic field finding that, when the vector
nature of the field is taken into account, spatial local-
ization over a wavelength scale along the electric field
is inhibited while still being possible in the transverse
direction.
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