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Kelvin—Helmbholtz instability in anisotropic superfluids
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Motivated by recent theoretical and experimental interest in the subject, we derive the condition of interfa-
cial Kelvin—Helmholtz instability for a system of two flowing superfluids (one sliding on the other). The tensor
structure of superfluid densities in anisotropic superfluids — such as *He-A, and also *He-B under external
magnetic field — is properly taken into account. The consequences relevant to experiments on the A—B phase

boundary in superfluid *He are discussed.

PACS: 47.20.Ma, 67.57.Np, 68.05.—n

1. Introduction. The Kelvin-Helmholtz (KH) in-
stability of an interface separating two flowing fluids
manifests itself in various everyday phenomena in Na-
ture, such as wave generation by wind blowing on water
surface and flapping of flags and sails. A direct exper-
imental verification of the theoretical prediction for the
instability criterion, originally studied by Lord Kelvin
[1], has nevertheless proven difficult with classical fluids.
This is because viscous effects, neglected by the theory,
affect the instability in an essential manner. However,
as proven by experimental studies on the interface be-
tween the A and B phases of superfluid 3He [2], in su-
perfluid systems (where viscosity does not play a role) a
well-defined instability can be observed, and the original
theoretical ideas tested in detail.

At the instability of the A— B interface, when a situ-
ation with shear flow is set up by rotating the sample, a
small amount of quantized vorticity is transferred from
the A phase to the B phase. Therefore, as a control-
lable vortex-injection mechanism, the KH instability has
recently proven itself a valuable tool in various experi-
mental studies concerning superfluid turbulence and the
dynamics of quantized vortices in general [3]. Also, the
dispersion relation for surface waves (ripplons) excited
on the A— B interface has been shown to be closely re-
lated to relativistic dynamics in the Schwarzschild metric
[4]; in this work, the idea of using superfluid *He as a lab-
oratory model system for testing some aspects of black-
hole physics has been raised (see also Ref. [5]). Further-
more, the superfluid KH instability has been discussed
in connection with multicomponent Bose-Einstein con-
densates [6], phase-separated *He—*He mixtures [7], and
even as a possible source for pulsar glitches [8].

Motivated by these recent developments, we derive
the condition for the superfluid KH instability. Since
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both ®He-A and 3He-B in applied magnetic fields are
anisotropic, we take into account their anisotropic su-
perfluid densities. Also, fluid layers of arbitrary thick-
ness are considered. The resulting instability criterion
involves a different combination of density-tensor ele-
ments than suggested previously [9].

2. KH instability — main features. The problem
of the KH instability in classical hydrodynamics consid-
ers an interface separating two immiscible ideal fluids
in relative motion (one fluid sliding on the other, both
of infinite extent), i.e. a tangential discontinuity. Such
shear flow becomes unstable if the velocity difference ex-
ceeds a critical value determined by (see e.g. Ref. [11]
for derivation)

2 p1+p2

1
PIP2_ |y, —v,|? = VoF, (1)

where p; and py (v; and vy) are the densities (velocities)
of the two fluids, o is the surface tension of the separat-
ing interface, and F is a force (per unit volume) due to
an external field stabilizing the position of the interface.
Usually, this force is provided by the gravitational field,
F = g(p1 — p2)- The wave vector corresponding to the
first unstable mode which gets excited at the instability
is

ko = \/F/o. 2)

The KH instability in the context of superfluids has
been analyzed theoretically by Volovik [9]. As pointed
out in this work, the most crucial modification as com-
pared with the classical KH instability is the breakdown
of the Galilean invariance, originating from the two-fluid
nature of superfluid hydrodynamics. A preferred refer-
ence frame is provided by the frame of the container,
with respect to which the normal components of the two
superfluids are stationary. In this frame, assuming that
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v || va (which corresponds to the experimental situa-
tion in Ref. [2]) the instability criterion emerges as [9]

1 1
2 p1vi + 2 pav; = VoF, (3)

with the same wave vector k¢ as in the classical case,
given by Eq. (2). The densities and velocities in Eq. (3)
refer to those of the superfluid components. Note that
here the instability can also appear when v = vs (cf. a
flapping flag in the wind, where the flagpole breaks the
Galilean invariance [10]).

Additionally, in the particular case of an A—B in-
terface in superfluid 3He, the position of the inter-
face is stabilized by an external magnetic-field gradient,
F = %(XA — xB)|V(H?)|, where x4 and xp are the
susceptibilities of the two superfluid phases (x4 > xB)-
Therefore, a well-defined instability occurs even though
the mass densities of the phases are equal to a high ac-
curacy. The threshold determined by Eq. (3) is in re-
markable agreement with experimental observations [2].

3. KH instability of anisotropic superfluids.
We now proceed to the derivation of the condition for
superfluid KH instability, allowing for mass anisotropy
and finite thicknesses of the two liquid layers. As shown
in Ref. [9], the instability criterion can be derived in
various different ways. Here we follow perhaps the most
transparent of them, which considers the free energy
connected with a perturbation of the interface between
the two liquids. We take the unperturbed superfluid ve-
locities vi(a) = vy(2) X of the liquids (in the rest frame
of the container and the normal fractions) to be paral-
lel to each other, and the coordinate z to be along the
interface normal, see Fig.1. Translational invariance in

z
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>

Fig.1. Geometry of the problem. Small-amplitude static
perturbations of an interface at z = 0 separating two su-
perfluid layers of thicknesses h1, h2 and superfluid veloci-
ties vi, va (v1 || v2) are investigated

the y direction is assumed. We then write the superfluid
velocities as vg1(2) = Vi(2) + Vi(2), where Vy(3) are the
modifications due to the perturbation of the interface.
The unperturbed interface is taken to be located at
z = 0, and outer walls bounding the liquid layers situ-
ated at 2 = —h; and z = hy. We consider small static

interfacial perturbations uniform in the y direction, and
of the form

¢ = asin(kz). 4)
The perturbation parts of the superfluid velocities can
be written as vy(2) = V1 (2), where
11 = Az cosh[kf (z + hq)] cos(kz),
s = A cosh[k (z — h2)] cos(kz), (5)

which satisfies 91 ,(z = —h1) = D2 ,(2 = ha) = 0 at the
solid outer boundaries. From the equations of continuity

V(Po1-Vs1) =0, V-(py2-Vs2) =0,  (6)
where Dy5) = pipX% + pll’(2)§r§r + pfz)22 is the
anisotropic superfluid density tensor, we obtain the con-
ditions

pi k= pf (k])?, P35 K = p5 (K3)”. (7)

Additionally, we require that there be no mass flow
through the interface,

§-(Psz - Vs2) =0, (8)

where § is the unit normal of the interface, we find the
further conditions (to first order in the small perturba-
tion)

S- (ﬁsl ) v81) = Oa

pi A1k sinh(kfhy) — pfavik = 0,

piAskZ sinh(kZhs) + pSavak = 0. 9)
We return to the justification of Eq. (8) in more detail
below.

The free-energy functional for the perturbed flow can
be written in the form

Fl¢l = %/dm [F§2+a(%>2+

¢ ha
/ dz(vs “Ps1 V1) + /dz(vs2 “Ps2t st)] .
—h1 ¢

The flow is unstable when the free energy of perturbed
flow is lower than that of unperturbed flow, i.e. when
F[¢] < Fo = F[{ = 0]. Substituting Eqs. (4)—(9), we
find that the first-order modification of the free energy
vanishes, and the second-order contribution reads

FI) = Fo o a? [F +ok? = k(pTo? + p;ffvé)] . (10)

with the definition
- b
tanh (kh1 v/ pE /pf)
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and similarly for p$f. The criterion for the instability is
now determined so that the expression on the right-hand
side of Eq. (10) first becomes negative for some wave vec-
tor k. In the limiting case of thick layers (appropriate for
the experiments in Ref. [2]), khq, kha > 1, this happens
first for k = ko, and the instability condition reads

Lo [PE 2, o [P5 o VoF
S|P o vi + P2 o vy | =veF.  (12)
1 2

In the isotropic limit, pf(z) = p'lz(z) = pi(2), the crite-
rion in Eq. (3) is recovered. The full anisotropic result,
however, differs from Eq. (21) in Ref. [9].

Another limiting case which could be experimentally
realized, as well as being interesting in view of Ref. [4], is
that of one thin layer, say kh; < 1, and vo = 0. In this
case, the parameters of fluid 2 (h2, p% and p3) do not
enter the instability criterion. It then follows that the
instability first develops with large wavelengths, & — 0,
and the threshold velocity adopts the simple form

’UlzﬂFhl/pf. (13)

4. Boundary condition. To give a physical moti-
vation to the boundary condition in Eq. (8), we return
again to the specific case of the A—B phase boundary in
superfluid *He. Experimentally, a situation with shear
flow can be accomplished by rotating a sample of super-
fluid 3He where an A— B interface has initially been sta-
bilized using an external magnetic field with a gradient
along the axis of rotation, see Fig.2. Because the criti-
cal velocity of vortex nucleation is much lower in 3He-A
than in ®He- B, with moderate angular velocities of rota-
tion vortex lines appear in the A-phase volume while the
volume occupied by the B phase remains vortex-free. In
this way, a relative flow between the superfluid compo-
nents of these two quantum liquids is set up.

Since the vortices cannot terminate at the interface,
they must bend to the container wall. Actually, the vor-
tices form a surface sheet on the phase boundary [12]. In
stable equilibrium, the net force on the vortex lines coat-
ing the interface must vanish when they are stationary
in the container frame, i.e. vy = v,. In that case, there
is no frictional force from the normal component, and
the equation of force balance reads (see, e.g. Ref. [13])

Fiot =Fum + F1 + Fine =0, (14)

with the Magnus force from the local superfluid velocity
field

Fy = pk X (v — V), (15)
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Fig.2. Schematic representation of the A—B interface in-
stability experiment in superfluid ®He in a state of equi-
librium. In a rotating cylindrical container, the A-phase
occupying the upper volume contains the equilibrium num-
ber of vortices, and the lower B-phase volume remains
vortex-free. The A-phase vortices bend to the container

wall forming a vortex sheet on the interface

where p is the total mass density of the liquid and
is the circulation vector; the Iordanskii force from the
elementary excitations (quasiparticles in the system)

Fi=kx[p, (Vs — Vi), (16)

(with the normal-density tensor p,,) and the force from
the interface

Fint = fint 8. (17)

With these definitions, the vanishing of § x Fy, implies
Eqg. (8). Obviously, for the condition of local equilibrium
to be valid, in the above derivation we have assumed that
the timescale characterizing the dynamics of vortices is
short compared with that determining the time evolution
of the A— B interface.

5. Consequences. Next, we discuss the implica-
tions of Eq. (12) regarding the A—B phase boundary
experiments of the type reported in Ref. [2]. Since the
A phase essentially contains the equilibrium number of
vortices, v4 = 0, and the critical velocity of the KH
instability is given by

4 F 1/4
B = 7( gAB ) (18)

\/ P

where now p$f = p%./p%/p% . Despite the anisotropy
inherent in the p-wave pairing of superfluid *He, unper-
turbed bulk B-phase is isotropic in its physical proper-
ties. In the presence of an external magnetic field and



774 T. Ruokola, J. Kopu

superflow, however, gap distortion induces an anisotropy
to the superfluid density in *He-B [14]. The result-
ing density tensor is of uniaxial form, with components
given by

PB,ij = Pu; Iil; + pg (8i5 — lil), (19)

where the unit vector 1 = H - R is the axis of orbital
anisotropy (I:I is a unit vector in the direction of the ex-
ternal magnetic field and R the rotation matrix defining
the B-phase order parameter).

In the Ginzburg-Landau regime, the mass-density
tensor components in the presence of an external field
H can be written as [14]

H? .
s | P
H3(1-T/T.)|"® (20)

1 ~ A0
PB =~ PB>

pljlgz 1-3

where Hy = pp/m*&y ~ 1.64 T, and pY is the isotropic
value corresponding to unperturbed bulk 3He-B. In
first approximation, therefore, the tensor component
along the direction of 1is suppressed, while the other
components stay unaffected. We have neglected the
small additional suppression due to counterflow, which
is justified for the typical experimental velocities vp <
< (2m*&) ! ~ 6.3 cm/s.

To estimate the magnitude of the effect, we insert the
values H = 367 mT and T = 0.57 T, (one particular ex-
periment performed at pressure p = 29 bar, see Ref. [3],
reference 30) in Eq. (20), leading to pljl_q ~ 0.65 p%. Al-
though the extrapolation of the Ginzburg-Landau result
to such low temperatures can certainly be questioned,
we think it is safe to conclude that the anisotropy effects
discussed here are large enough to have experimental
significance.

Of course, the actual effect of the density anisotropy
depends on the orientation of 1 in our coordinate Sys-
tem depicted in Fig.1. This requires a careful analysis
of several different mechanisms trying to orient the or-
der parameter [15], originating e.g. from the external
magnetic field, counterflow, container surfaces (the in-
stability is expected to occur near the surface where the
counterflow is highest), and the presence of the A—B in-
terface. Because a detailed investigation of these effects
is a fairly complicated problem, we list three possible
orientations of i, which correspond to the preferred di-
rections of different orienting influences.

(i) 1]| ®: This choice minimizes the kinetic energy
of the flow; the axis of orbital anisotropy coincides with
the flow direction, and we have

P11 %) = plsy/ o/ k- (21)

According to Eq. (20), this results in a reduction of p$f
as compared to the isotropic value p%, and an enhance-
ment of the threshold velocity in Eq. (18).

(i) 1 || §: For this wall-dominated order-parameter
orientation,

p5(A13) =5, (22)

and the main gap suppression is along the direction per-
pendicular to the plane of Fig.1. In this case, therefore,
no significant deviation from the isotropic result is to be
expected.

(iii) 1 || 2: This orientation would follow in the ab-
sence of other effects than that of the axially oriented
magnetic field. We obtain

P (111 2) = o5/ pE /P, (23)

resulting in an apparent enhancement of the effective
superfluid density from the isotropic value, p$f > p% !
With the values of H and T used in the earlier esti-
mate above, we find p$f ~ 1.25 p%. It is interesting to
note that the authors of Ref. [3] state (reference 30 in
the article) that a good fit to the experimental data of
the instability threshold, using Eq. (3), was obtained by
taking pg(H) =~ 1.15 pg(H = 0).

Even though the choice 1 || z appears difficult to jus-
tify in the circumstances of the experiment (the A—B
phase boundary has a strong tendency to orient 118
[16]), it is clear that any attempts aiming at a quan-
titative understanding of the A—B interface instability
should take anisotropy effects into account.

We thank G.E.Volovik, V.B.Eltsov, A.P.Finne,
M. Krusius, and E. V. Thuneberg for useful discussions.
This work was supported by the Academy of Finland.

1. Lord Kelvin (Sir William Thomson), Hydrodynamics
and General Dynamics, Mathematical and Physical Pa-
pers, Vol. 4, Cambridge University Press, Cambridge,
England, 1910.

2. R. Blaauwgeers, V. B. Eltsov, G. Eska et al., Phys. Rev.
Lett. 89, 155301 (2002).

3. A.P. Finne, S. Boldarev, V.B. Eltsov et al., J. Low
Temp. Phys. 136, N. 5/6, 249 (2004).

4. G.E. Volovik, Pis’'ma ZhETF 76, 296 (2002) [JETP
Lett. 76, 240 (2002)].

5. G.E. Volovik, The Universe in a Helium Droplet,
Clarendon Press, Oxford, 2003.

6. D.A. Abanin, Pis’'ma ZhETF 77, 222 (2003) [JETP
Lett. 77, 191 (2003)].

7. S.N. Burmistrov, L. B. Dubovskii, and T. Satoh, J. Low
Temp. Phys. 138, N. 3/4, 513 (2005).

Mucema B MAT® Tom 81 BEIM.11-12 2005



Kelvin—Helmbholtz instability . .. 775

8. N. Andersson, G.L. Comer, and R. Prix, Phys. Rev.
Lett. 90, 091101 (2003).

9. G.E. Volovik, Pis’'ma ZhETF 75, 491 (2002) [JETP
Lett. 75, 418 (2002)].

10. Lord Rayleigh (J. W. Strutt), Scientific Papers, Cam-
bridge University Press, Cambridge, England, 1899.

11. L.D. Landau and E. M. Lifshitz, Fluid Mechanics, Perg-
amon Press, 1989, in Sec. 62 ’Capillary waves’.

IIucema B MITP® Tom 81 BRIm. 11-12 2005

12. R. Hanninen, R. Blaauwgeers, V. B. Eltsov et al., Phys.
Rev. Lett. 90, 225301 (2003).

13. G.E. Volovik, Pis’'ma ZhETF 62, 58 (1995) [JETP Lett.
62, 65 (1995)].

14. W. Janke and H. Kleinert, Phys. Lett. 78 A, 363 (1980).

15. H. Smith, W.F. Brinkman, and S. Engelsberg, Phys.
Rev. B 15, 199 (1977).

16. E.V. Thuneberg, Phys. Rev. B 44, 9685 (1991).



